Abstract

Nonlinear dynamics analysis is a crucial topic in mechanical and aerospace engineering. The analysis of nonlinear normal modes (NNMs) provides an effective mathematical tool for interpreting complex nonlinear vibration phenomena. Unlike the invariant normal modes of linear systems, NNMs often exhibit frequency–energy dependence and cannot be computed using the traditional eigen-decomposition method. Calculating NNMs relies on numerical methods that involve expensive iterative computations, especially for systems with numerous degrees-of-freedom. To relieve computational costs, this article proposes a mode selection method for the component mode synthesis (CMS) technique to enable compact reduced-order modeling of structures with localized nonlinearities. The reduced-order model is then combined with a numerical continuation scheme to establish a low-cost NNM analysis framework. This framework can efficiently predict the NNMs of high-dimensional finite element models. The proposed framework is demonstrated on an I-shaped cantilever beam with localized nonlinear stiffness. The results show that the proposed approach can identify the key modes in the CMS modeling procedure. The NNMs of the nonlinear I-shaped beam structure can then be analyzed with a significant reduction in computational costs.

References

1.
Jaumouillé
,
V.
,
Sinou
,
J.-J.
, and
Petitjean
,
B.
,
2010
, “
An Adaptive Harmonic Balance Method for Predicting the Nonlinear Dynamic Responses of Mechanical Systems—Application to Bolted Structures
,”
J. Sound Vib.
,
329
(
19
), pp.
4048
4067
.
2.
Lacayo
,
R.
,
Pesaresi
,
L.
,
Groß
,
J.
,
Fochler
,
D.
,
Armand
,
J.
,
Salles
,
L.
,
Schwingshackl
,
C.
,
Allen
,
M.
, and
Brake
,
M.
,
2019
, “
Nonlinear Modeling of Structures With Bolted Joints: A Comparison of Two Approaches Based on a Time-Domain and Frequency-Domain Solver
,”
Mech. Syst. Signal Process.
,
114
(
1
), pp.
413
438
.
3.
Zucca
,
S.
,
Firrone
,
C. M.
, and
Gola
,
M. M.
,
2012
, “
Numerical Assessment of Friction Damping at Turbine Blade Root Joints by Simultaneous Calculation of the Static and Dynamic Contact Loads
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1943
1955
.
4.
Allara
,
M.
,
2009
, “
A Model for the Characterization of Friction Contacts in Turbine Blades
,”
J. Sound Vib.
,
320
(
3
), pp.
527
544
.
5.
Krizak
,
T.
,
Kurstak
,
E.
, and
D’Souza
,
K.
,
2023
, “
Experimental and Computational Study of a Rotating Bladed Disk With Under-Platform Dampers
,”
AIAA J.
,
61
(
10
), pp.
4717
4727
.
6.
Lawal
,
I. G.
, and
Brake
,
M. R.
,
2023
, “
Energy Dissipation on an Elastic Interface as a Metric for Evaluating Three Friction Models
,”
ASME J. Appl. Mech.
,
90
(
8
), p.
081002
.
7.
Renson
,
L.
,
Kerschen
,
G.
, and
Cochelin
,
B.
,
2016
, “
Numerical Computation of Nonlinear Normal Modes in Mechanical Engineering
,”
J. Sound Vib.
,
364
(
3
), pp.
177
206
.
8.
Vakakis
,
A. F.
,
2001
,
Normal Modes and Localization in Nonlinear Systems
,
Springer
,
New York
.
9.
Rosenberg
,
R. M.
,
1962
, “
The Normal Modes of Nonlinear n-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
7
14
.
10.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2009
, “
Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques.
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.
11.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
John Wiley & Sons
,
Hoboken, NJ
.
12.
Chan
,
T. F.
,
1984
, “
Newton-Like Pseudo-Arclength Methods for Computing Simple Turning Points
,”
SIAM J. Sci. Stat. Comput.
,
5
(
1
), pp.
135
148
.
13.
Peeters
,
M.
,
Kerschen
,
G.
,
Golinval
,
J. C.
,
Stéphan
,
C.
, and
Lubrina
,
P.
,
2011
, “
Nonlinear Normal Modes of a Full-Scale Aircraft
,”
Modal Analysis Topics, Volume 3: Proceedings of the 29th IMAC, a Conference on Structural Dynamics
,
Jacksonville, FL
,
Jan. 31–Feb. 3
,
Springer
, pp.
223
242
.
14.
Craig
,
R. R.
, and
Bampton
,
M. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
15.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.
16.
Kuether
,
R. J.
, and
Allen
,
M. S.
,
2013
, “
Nonlinear Modal Substructuring of Systems With Geometric Nonlinearities
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–11
.
17.
Kuether
,
R. J.
, and
Allen
,
M. S.
,
2014
, “
Substructuring with Nonlinear Reduced Order Models and Interface Reduction with Characteristic Constraint Modes
,”
55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference
,
National Harbor, MD
,
Jan. 13–17
.
18.
Kuether
,
R. J.
, and
Allen
,
M. S.
,
2014
, “
Craig-Bampton Substructuring for Geometrically Nonlinear Subcomponents
,”
Dynamics of Coupled Structures, Volume 1: Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, 2014
,
Orlando, FL
,
Feb. 3–6
,
Springer
, pp.
167
178
.
19.
Tien
,
M.-H.
,
Hu
,
T.
, and
D'Souza
,
K.
,
2018
, “
Generalized Bilinear Amplitude Approximation and X-Xr for Modeling Cyclically Symmetric Structures With Cracks
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041012
.
20.
Tien
,
M.-H.
,
Hu
,
T.
, and
D’Souza
,
K.
,
2019
, “
Statistical Analysis of the Nonlinear Response of Bladed Disks With Mistuning and Cracks
,”
AIAA J.
,
57
(
11
), pp.
4966
4977
.
21.
Pastor
,
M.
,
Binda
,
M.
, and
Harčarik
,
T.
,
2012
, “
Modal Assurance Criterion
,”
Procedia Eng.
,
48
, pp.
543
548
.
22.
Huang
,
S.-C.
, and
Tien
,
M.-H.
,
2024
, “
A Hybrid Continuation Framework for Analyzing Nonlinear Normal Modes of Systems With Contact Nonlinearity
,”
ASME J. Comput. Nonlinear Dyn.
,
19
(
7
), p.
071008
.
You do not currently have access to this content.