Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The flexible shafts in aviation equipment experience severe vibration upon exceeding the critical speed, causing severe damage to the equipment. To address this issue, a novel technique for vibration reduction using a multi-gap limiting ring device is proposed. The coupled effects of rub-impact, dry friction, and limiting are considered in a dynamic model for a multi-gap limiting ring device, and then the dynamic equation for the bending-torsional coupling of the flexible shaft with the limiting ring device is derived. Furthermore, the reverse whirl instability behavior of the shaft and the effect of various parameters on the damper performance are analyzed using a hybrid numerical method. Finally, experiments are conducted to verify the accuracy of the theoretical method. The findings show that the critical speed of the shaft rises due to the increased stiffness from the rub-impact between the limiting ring device and the shaft. The rub-impact point simultaneously causes bending-torsional coupling, which leads to torsional vibration of the shaft. Moreover, the rubbing gap, friction coefficient, preload force, and dry friction gap have a considerable impact on the limiting ring device's ability to reduce vibration. A poor choice of parameters can result in malfunctioning of the limiting ring device. Overall, this study can serve as an effective theoretical guide for the vibration reduction of flexible shafts.

References

1.
Lu
,
F. X.
,
Zhu
,
R. P.
, and
Ni
,
D.
,
2016
, “
Influence of Helicopter's Maneuvering Flight on the Critical Speed of Tail Drive Shaft
,”
J. Vib. Shock
,
35
(
11
), pp.
109
115
.
2.
Yang
,
Y.
,
Ouyang
,
H. J.
,
Yang
,
Y. R.
,
Cao
,
D. Q.
, and
Wang
,
K.
,
2020
, “
Vibration Analysis of a Dual-Rotor-Bearing-Double Casing System With Pedestal Looseness and Multi-stage Turbine Blade-Casing Rub
,”
Mech. Syst. Signal Process.
,
143
, p.
106845
.
3.
Wang
,
N. F.
, and
Jiang
,
D. X.
,
2018
, “
Vibration Response Characteristics of a Dual-Rotor With Unbalance-Misalignment Coupling Faults: Theoretical Analysis and Experimental Study
,”
Mech. Mach. Theory
,
125
, pp.
207
219
.
4.
Zielnica
,
J.
,
Ziolkowski
,
A.
, and
Cempel
,
C.
,
2003
, “
Non-linear Vibroisolation Pads Design, Numerical FEM Analysis and Introductory Experimental Investigations
,”
Mech. Syst. Signal Process.
,
17
(
2
), pp.
409
422
.
5.
Liu
,
S. B.
, and
Yang
,
B. G.
,
2017
, “
Optimal Placement of Water-Lubricated Rubber Bearings for Vibration Reduction of Flexible Multistage Rotor Systems
,”
J. Sound Vib.
,
407
(
27
), pp.
332
349
.
6.
Zhu
,
H. M.
,
Chen
,
W. F.
,
Li
,
M. M.
,
Zhu
,
R. P.
,
Zhang
,
L.
,
Fu
,
B. B.
,
Wang
,
S.
, and
Lu
,
X.
,
2021
, “
Experimental and Numerical Investigation of Rubber Damping Ring and Its Application in Multi-span Shafting
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
, pp.
1
18
.
7.
Ha
,
B. B.
, and
Ding
,
Q.
,
2018
, “
Forced Responses Analysis of a Rotor System With Squeeze Film Damper During Flight Maneuvers Using Finite Element Method
,”
Mech. Mach. Theory
,
122
, pp.
233
251
.
8.
Heidari
,
H. R.
, and
Safarpour
,
P.
,
2016
, “
Design and Modeling of a Novel Active Squeeze Film Damper
,”
Mech. Mach. Theory
,
105
, pp.
235
243
.
9.
Han
,
Z. F.
,
Ding
,
Q.
, and
Zhang
,
W.
,
2019
, “
Dynamical Analysis of an Elastic Ring Squeeze Film Damper-Rotor System
,”
Mech. Mach. Theory
,
131
, pp.
406
419
.
10.
Enemark
,
S.
, and
Santos
,
I. F.
,
2016
, “
Rotor-Bearing System Integrated With Shape Memory Alloy Springs for Ensuring Adaptable Dynamics and Damping Enhancement-Theory and Experiment
,”
J. Sound Vib.
,
369
, pp.
29
49
.
11.
Vieira
,
W.
,
Nitzsche
,
F.
, and
Marqui
,
C. D.
,
2018
, “
The Use of Damping Based Semi-active Control Algorithms in the Mechanical Smart-Spring System
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021011
.
12.
Ma
,
H. Y.
,
Li
,
L.
,
Wu
,
Y. G.
,
Fan
,
Y.
, and
Gao
,
Q.
,
2020
, “
Design of Dry Friction Dampers for Thin-Walled Structures by an Accelerated Dynamic Lagrange Method
,”
J. Sound Vib.
,
489
, p.
115550
.
13.
Natsivasa
,
S.
,
1990
, “
Stability and Bifurcation Analysis for Oscillators With Motion Limiting Constraints
,”
J. Sound Vib.
,
141
(
1
), pp.
97
102
.
14.
Yanabe
,
S.
,
Kaneko
,
S.
,
Kanemitsu
,
Y.
,
Tomi
,
N.
, and
Sugiyama
,
K.
,
1998
, “
Rotor Vibration Due to Collision With Annular Guard During Passage Through Critical Speed
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
544
550
.
15.
Dżygadło
,
Z.
, and
Perkowski
,
W.
,
2002
, “
Research on Dynamics of a Supercritical Propulsion Shaft Equipped With a Dry Friction Damper
,”
Aircr. Eng. Aerosp. Technol.
,
74
(
5
), pp.
447
454
.
16.
Dżygadło
,
Z.
, and
Perkowski
,
W.
,
2000
, “
Nonlinear Dynamic Model for Flexural Vibrations Analysis of a Supercritical Helicopter's Tail Rotor Drive Shaft
,”
22nd Congress of International Council of the Aeronautical Sciences
,
Harrogate, UK
,
Aug. 18–Sept. 1
, Paper ICAS 2000-1.8.3.
17.
Ozaydin
,
O.
, and
Cigeroglu
,
E.
,
2017
, “
Effect of Dry Friction Damping on the Dynamic Response of Helicopter Tail Shaft [C]. Rotating Machinery, Hybrid Test Methods
,”
Vibro-Acoust. Laser Vibrometry
,
8
, pp.
23
30
.
18.
Ozaydin
,
O.
,
2017
, “
Vibration Reduction of Helicopter Tail Shaft by Using Dry Friction Dampers
,”
Master thesis
,
Middle East Technical University
,
Ankara
.
19.
Song
,
M. B.
,
Liao
,
M. F.
, and
Wang
,
S. J.
,
2019
, “
Experimental Investigation on the Vibration Reduction Performance of a Damper With C-Shape Tunable Elastic Support and Dry Friction
,”
J. Vib. Shock
,
38
(
14
), pp.
18
22
.
20.
Liao
,
M. F.
,
Song
,
M. B.
, and
Wang
,
S. J.
,
2014
, “
Active Elastic Support/Dry Friction Damper With Piezoelectric Ceramic Actuator
,”
Shock Vib.
,
2014
, pp.
1
10
.
21.
Huang
,
Z. H.
,
Tan
,
J. P.
, and
Lu
,
X.
,
2021
, “
Phase Difference and Stability of a Shaft Mounted a Dry Friction Damper: Effects of Viscous Internal Damping and Gyroscopic Moment
,”
Adv. Mech. Eng.
,
13
(
3
), pp.
1
17
.
22.
Huang
,
Z. H.
,
Tan
,
J. P.
,
Liu
,
C. L.
, and
Huang
,
S.
,
2022
, “
All-Round Responses and Boundaries of a Shaft and Dry Friction Damper Assembly
,”
Int. J. Non Linear Mech.
,
142
, p.
103977
.
23.
Wang
,
D.
,
Song
,
L. Y.
,
Zhu
,
R. P.
, and
Cao
,
P.
,
2022
, “
Nonlinear Dynamics and Stability Analysis of Dry Friction Damper for Supercritical Transmission Shaft
,”
Nonlinear Dyn.
,
110
(
4
), pp.
3135
3149
.
24.
Hong
,
J.
,
Yu
,
P. C.
,
Zhang
,
D. Y.
, and
Ma
,
Y. H.
,
2019
, “
Nonlinear Dynamic Analysis Using the Complex Nonlinear Modes for a Rotor System With an Additional Constraint Due to Rub-Impact
,”
Mech. Syst. Signal Process.
,
116
, pp.
443
461
.
25.
Chipato
,
E.
,
Shaw
,
A. D.
, and
Friswell
,
M. I.
,
2019
, “
Frictional Effects on the Nonlinear Dynamics of an Overhung Rotor
,”
Commun. Nonlinear Sci. Numer. Simul.
,
78
(
6
), p.
104875
.
26.
Friswell
,
M. I.
,
Penny
,
J. E. T.
,
Garvey
,
S. D.
, and
Lees
,
A. W.
,
2010
,
Dynamics of Rotating Machines
,
Cambridge University Press
,
London
.
27.
Li
,
Y.
,
Liao
,
M. F.
,
Wang
,
S. J.
,
Zhao
,
Q. Z.
, and
Zhao
,
L.
,
2020
, “
Effects of Squeeze Film Damper Concentricity and Rubbing on Rotor Vibration Characteristics
,”
J. Vib. Shock
,
39
(
1
), pp.
150
168
.
28.
Hutchinson
,
J. R.
,
2001
, “
Shear Coefficients for Timoshenko Beam Theory
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
87
92
.
You do not currently have access to this content.