Abstract

Bistable and multistable laminates are structural elements with more than one stable equilibrium configuration. The bistability makes them very interesting for the design of compliant mechanisms. However, these laminates are extremely sensitive to boundary conditions and attachment methods. It has been shown prior in the literature that restrictive boundary conditions can lead to the loss of bistability or unwanted deformation modes. This article develops attachment concepts that leverage the structural behavior changes caused by boundary conditions to expand the design space of bistable elements for structural applications. A systematic means of using the boundary conditions to improve the stability margins and load introduction of bistable tape springs is demonstrated. The stability margins and the achievable angles have been quantified using an analytical model previously developed by Guest and Pellegrino. Subsequently, high-fidelity finite element (FE) simulations are done in abaqus to determine the limits of the proposed method in terms of localization effects. Based on the analytical model and simulation outcomes, layup, size, and attachment points are determined, and two prototypes are fabricated, illustrating the effectiveness of the proposed method in expanding the design space of traditional bistable tape springs.

References

1.
Kuder
,
I. K.
,
Fasel
,
U.
,
Ermanni
,
P.
, and
Arrieta
,
A. F.
,
2016
, “
Concurrent Design of a Morphing Aerofoil With Variable Stiffness Bi-Stable Laminates
,”
Smart Mater. Struct.
,
25
(
11
), p.
115001
.
2.
Emam
,
S. A.
, and
Inman
,
D. J.
,
2015
, “
A Review on Bistable Composite Laminates for Morphing and Energy Harvesting
,”
ASME Appl. Mech. Rev.
,
67
(
6
), p.
060803
.
3.
Mukherjee
,
A.
,
Ali
,
S. F.
, and
Arockiarajan
,
A.
,
2021
, “
Hybrid Bistable Composite Laminates for Structural Assemblies: A Numerical and Experimental Study
,”
Composite Struct.
,
260
, p.
113467
.
4.
Zhang
,
Z.
,
Pei
,
K.
,
Sun
,
M.
,
Wu
,
H.
,
Yu
,
X.
,
Wu
,
H.
,
Jiang
,
S.
, and
Zhang
,
F.
,
2020
, “
A Novel Solar Tracking Model Integrated With Bistable Composite Structures and Bimetallic Strips
,”
Composite Struct.
,
248
, p.
112506
.
5.
Mukherjee
,
A.
,
Friswell
,
M. I.
,
Ali
,
S. F.
, and
Arockiarajan
,
A.
,
2020
, “
Modeling and Design of a Class of Hybrid Bistable Symmetric Laminates With Cantilever Boundary Configuration
,”
Composite Struct.
,
239
, p.
112019
.
6.
Costantine
,
J.
,
Tawk
,
Y.
,
Christodoulou
,
C. G.
,
Banik
,
J.
, and
Lane
,
S.
,
2012
, “
Cubesat Deployable Antenna Using Bistable Composite Tape-Springs
,”
IEEE Antennas Wireless Propagation Lett.
,
11
, pp.
285
288
.
7.
Brinkmeyer
,
A.
,
Pellegrino
,
S.
, and
Weaver
,
P. M.
,
2016
, “
Effects of Long-Term Stowage on the Deployment of Bistable Tape Springs
,”
ASME J. Appl. Mech.
,
83
(
1
), p.
011008
.
8.
Mao
,
H.
,
Ganga
,
P. L.
,
Ghiozzi
,
M.
,
Ivchenko
,
N.
, and
Tibert
,
G.
,
2017
, “
Deployment of Bistable Self-Deployable Tape Spring Booms Using a Gravity Offloading System
,”
J. Aerospace Eng.
,
30
(
4
), p.
04017007
.
9.
Doggett
,
W. R.
,
Dorsey
,
J. T.
,
Jones
,
T. C.
, and
King
,
B.
,
2014
, “
Development of a Tendon-Actuated Lightweight In-Space Manipulator (Talisman)
,”
The 42nd Aerospace Mechanism Symposium
,
NASA Goddard Space Flight Center
,
May 14–16
.
10.
Wu
,
Z.
, and
Li
,
H.
,
2017
, “
A Novel Adaptive Sun Tracker for Spacecraft Solar Panel Based on Hybrid Unsymmetric Composite Laminates
,”
Smart Materials Struct.
,
26
(
11
), p.
115020
.
11.
Panesar
,
A. S.
, and
Weaver
,
P. M.
,
2012
, “
Optimisation of Blended Bistable Laminates for a Morphing Flap
,”
Composite Struct.
,
94
(
10
), pp.
3092
3105
.
12.
Haldar
,
A.
,
Groh
,
R.
,
Jansen
,
E.
,
Weaver
,
P. M.
, and
Rolfes
,
R.
,
2020
, “
An Efficient Semi-Analytical Framework to Tailor Snap-Through Loads in Bistable Variable Stiffness Laminates
,”
Int. J. Solids. Struct.
,
195
, pp.
91
107
.
13.
Kumar
,
A. P.
,
Anilkumar
,
P.
,
Haldar
,
A.
,
Scheffler
,
S.
,
Jansen
,
E.
,
Rao
,
B.
, and
Rolfes
,
R.
,
2021
, “
Tailoring Bistability in Unsymmetrical Laminates Using an Additional Composite Strip
,”
Thin-Walled Struct.
,
168
, p.
108212
.
14.
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Stiffness Tailoring Using Prestress in Adaptive Composite Structures
,”
Composite Struct.
,
106
, pp.
282
287
.
15.
Daynes
,
S.
,
Weaver
,
P.
, and
Potter
,
K.
,
2009
, “
Aeroelastic Study of Bistable Composite Airfoils
,”
J. Aircraft
,
46
(
6
), pp.
2169
2174
.
16.
Mukherjee
,
A.
,
Kumar
,
D.
,
Ali
,
S. F.
, and
Arockiarajan
,
A.
,
2020
, “Design and Conception of a Trailing Edge Morphing Wing Concept With Bistable Composite Skin,”
Active and Passive Smart Structures and Integrated Systems XIV
, Vol.
11376
,
J.-H.
Han
, ed.,
International Society for Optics and Photonics, SPIE
,
Bellingham, WA
, p.
113762K
.
17.
Haldar
,
A.
,
Reinoso
,
J.
,
Jansen
,
E.
, and
Rolfes
,
R.
,
2018
, “
Thermally Induced Multistable Configurations of Variable Stiffness Composite Plates: Semi-Analytical and Finite Element Investigation
,”
Composite Struct.
,
183
, pp.
161
175
.
18.
Guest
,
S.
, and
Pellegrino
,
S.
,
2006
, “
Analytical Models for Bistable Cylindrical Shells
,”
Proc. Royal Soc. A: Math. Phys. Eng. Sci.
,
462
(
2067
), pp.
839
854
.
19.
Calladine
,
C. R.
,
1983
,
Theory of Shell Structures
,
Cambridge University Press
,
Cambridge, UK
.
20.
Kebadze
,
E.
,
Guest
,
S.
, and
Pellegrino
,
S.
,
2004
, “
Bistable Prestressed Shell Structures
,”
Int. J. Solids. Struct.
,
41
(
11–12
), pp.
2801
2820
.
21.
Galletly
,
D. A.
, and
Guest
,
S. D.
,
2004
, “
Bistable Composite Slit Tubes. II. A Shell Model
,”
Int. J. Solids. Struct.
,
41
(
16–17
), pp.
4503
4516
.
22.
Mukherjee
,
A.
,
Risso
,
G.
, and
Ermanni
,
P.
,
2023
, “
Quantifying the Strength of Stability of Multi-Stable Structures: A New Design Perspective
,”
Thin-Walled Struct.
,
189
, p.
110921
.
23.
North Thin Ply Technology
,
2017
,
NTPT Thinpreg 513 Data Sheet
, Version 1,3,
North Thin Ply Technology
,
Renens, Switzerland
. https://www.thinplytechnology.com/assets/mesimages/NTPT-DS-ThinPreg-513-April2017-v3.pdf
24.
Yang
,
L.
,
Tan
,
H.
, and
Cao
,
Z.
,
2018
, “
Modeling and Analysis of the Ploy Region of Bistable Composite Cylindrical Shells
,”
Composite Struct.
,
192
, pp.
347
354
.
25.
Seffen
,
K. A.
,
Wang
,
B.
, and
Guest
,
S. D.
,
2019
, “
Folded Orthotropic Tape-Springs
,”
J. Mech. Phys. Solids.
,
123
, pp.
138
148
.
26.
Wang
,
B.
,
Seffen
,
K. A.
, and
Guest
,
S. D.
,
2019
, “
Shape of a Bistable Composite Tape-Spring in Folding
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
2276
.
You do not currently have access to this content.