Abstract

Over the past decade, modeling of cable-harnessed space structures has received special attention due to the need for better accuracies than the existing models. As these structures become more lightweight upon the advancements in the materials science, it is imperative to further consider accurate models in which the dynamic effects of the added cables are better accounted for. Researchers have heavily focused on creating models for cable-harnessed beam-like structures, while very few studies have considered plate-like structures. The proposed research aims at the development of an analytical model for cable-harnessed plate-like structures. Cables are assumed to be periodic in geometry to allow for the application of an energy-equivalent homogenization technique. To begin with, a linear displacement field and a second-order Green-Lagrange strain tensor for strain–displacement relationships are considered. The strain and kinetic energies of the fundamental element are found using these relations. The repeated pattern of the fundamental element over the area of the plate structure allows for the employment of the homogenization approach in which the kinetic and strain energies per area of the fundamental element are found and assumed to remain the same as an equivalent homogenized solid plate-like element. The governing dynamic partial differential equations (PDEs) are found using the Hamilton's principle. The results are validated using the finite element analysis. A detailed parametric analysis is also performed to investigate the effects of various cable parameters and wrapping patterns on the dynamics of the host structure.

References

1.
Babuska
,
V.
,
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2010
, “
Modeling and Experimental Validation of Space Structures With Wiring Harnesses
,”
J. Spacecr. Rockets
,
47
(
6
), pp.
1038
1052
.
2.
Robertson
,
L.
,
Lane
,
S.
,
Ingram
,
B.
,
Hansen
,
E.
,
Babuska
,
V.
,
Goodding
,
J.
,
Mimovich
,
M.
,
Mehle
,
G.
,
Coombs
,
D.
, and
Ardelean
,
E.
,
2007
, “
Cable Effects on The Dynamics of Large Precision Structures
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
American Institute of Aeronautics and Astronautics
,
Honolulu, HI
,
Apr. 23–26
, p.
2389
.
3.
Goodding
,
J.
,
Babuska
,
V.
,
Griffith
,
D. T.
,
Ingram
,
B.
, and
Robertson
,
L.
,
2007
, “
Studies of Free-Free Beam Structural Dynamics Perturbations Due to Mounted Cable Harnesses
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
American Institute of Aeronautics and Astronautics
,
Honolulu, HI
,
Apr. 23–26
, p.
2390
.
4.
Spak
,
K. S.
,
Agnes
,
G. S.
, and
Inman
,
D. J.
,
2015
, “
Modeling Vibration Response and Damping of Cables and Cabled Structures
,”
J. Sound Vib.
,
336
, pp.
240
256
.
5.
Martin
,
B.
, and
Salehian
,
A.
,
2019
, “
Continuum Modeling of Nonperiodic String-Harnessed Structures: Perturbation Theory and Experiments
,”
AIAA J.
,
57
(
4
), pp.
1736
1751
.
6.
Choi
,
J.
, and
Inman
,
D.
,
2013
, “
Development of Predictive Modeling for Cable Harnessed Structure
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
American Institute of Aeronautics and Astronautics
,
Boston, MA
,
Apr. 8–11
, p.
1888
.
7.
Choi
,
J.
, and
Inman
,
D. J.
,
2014
, “
Spectrally Formulated Modeling of a Cable-Harnessed Structure
,”
J. Sound Vib.
,
333
(
14
), pp.
3286
3304
.
8.
Agrawal
,
P.
, and
Salehian
,
A.
,
2020
, “
Damping Mechanisms in Cable-Harnessed Structures for Space Applications: Analytical Modeling
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
021001
.
9.
Agrawal
,
P.
, and
Salehian
,
A.
,
2020
, “
Damping Mechanisms in Cable-Harnessed Structures for Space Applications: Experimental Validation
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
024502
.
10.
Huang
,
Y.-X.
,
Tian
,
H.
, and
Zhao
,
Y.
,
2016
, “
Effects of Cable on the Dynamics of a Cantilever Beam With Tip Mass
,”
Shock Vib.
,
2016
, pp.
1
10
.
11.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2019
, “
Analytical Study of Coupling Effects for Vibrations of Cable-Harnessed Beam Structures
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031001
.
12.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Vibration Analysis of String-Harnessed Beam Structures: A Homogenization Approach
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
American Institute of Aeronautics and Astronautics
,
Boston, MA
,
Apr. 8–11
, p.
1892
.
13.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Dynamic Modelling of Cable-Harnessed Beam Structures With Periodic Wrapping Patterns: A Homogenization Approach
,”
Int. J. Model. Simul.
,
33
(
4
), pp.
185
202
.
14.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Cable-Harnessed Space Structures: A Beam-Cable Approach
,”
24th International Association of Science and Technology for Development International Conference on Modelling and Simulation
,
ACTA Press
,
Banff, AB, Canada
,
July 17–19
, pp.
280
284
.
15.
Martin
,
B.
, and
Salehian
,
A.
,
2014
, “
Vibration Modelling of String-Harnessed Beam Structures Using Homogenization Techniques
,”
Volume 4B: Dynamics, Vibration, and Control
,
American Society of Mechanical Engineers
,
Montreal, QC, Canada
,
Nov. 14–20
, pp.
1
8
.
16.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Mass and Stiffness Effects of Harnessing Cables on Structural Dynamics: Continuum Modeling
,”
AIAA J.
,
54
(
9
), pp.
2881
2904
.
17.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Homogenization Modeling of Periodically Wrapped String-Harnessed Beam Structures: Experimental Validation
,”
AIAA J.
,
54
(
12
), pp.
3965
3980
.
18.
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Babuška
,
V.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Dynamic Modeling and Experimental Validation of a Cable-Loaded Panel
,”
J. Spacecr. Rockets
,
48
(
6
), pp.
958
973
.
19.
Remedia
,
M.
,
Aglietti
,
G. S.
, and
Richardson
,
G.
,
2015
, “
Modelling the Effect of Electrical Harness on Microvibration Response of Structures
,”
Acta Astronaut.
,
109
, pp.
88
102
.
20.
Agrawal
,
P.
, and
Salehian
,
A.
,
2020
, “
Vibrations Analysis of Cable-Harnessed Plates: Continuum Modeling and Experimental Validation
,”
ASME J. Vib. Acoust.
,
143
(
5
), p.
051004
.
21.
Agrawal
,
P.
, and
Salehian
,
A.
,
2019
, “
Vibration Analysis of Cable-Harnessed Plate Structures
,”
Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019
,
Montreal, QC, Canada
,
July 7–11
, pp.
1
8
.
22.
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Babuška
,
V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Experimental Techniques and Structural Parameter Estimation Studies of Spacecraft Cables
,”
J. Spacecr. Rockets
,
48
(
6
), pp.
942
957
.
23.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2013
, “
Cable Modeling and Internal Damping Developments
,”
ASME Appl. Mech. Rev.
,
65
(
1
), p.
010801
.
24.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2014
, “
Parameters for Modeling Stranded Cables as Structural Beams
,”
Exp. Mech.
,
54
(
9
), pp.
1613
1626
.
25.
Spak
,
K. S.
,
Agnes
,
G. S.
, and
Inman
,
D.
,
2013
, “
Towards Modeling of Cable-Harnessed Structures: Cable Damping Experiments
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
American Institute of Aeronautics and Astronautics
,
Boston, MA
,
Apr. 8–11
, pp.
1
12
.
26.
Lesieutre
,
G. A.
,
2010
, “
Frequency-Independent Modal Damping for Flexural Structures via a Viscous “Geometric” Damping Model
,”
J. Guid. Control Dyn.
,
33
(
6
), pp.
1931
1935
.
27.
Kauffman
,
J. L.
, and
Lesieutre
,
G. A.
,
2013
, “
Damping Models for Timoshenko Beams With Applications to Spacecraft Wiring Harnesses
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
American Institute of Aeronautics and Astronautics
,
Boston, MA
,
Apr. 8–11
, p.
1890
.
28.
Lesieutre
,
G. A.
, and
Kauffman
,
J. L.
,
2013
, “
‘Geometric’ Viscous Damping Model for Nearly Constant Beam Modal Damping
,”
AIAA J.
,
51
(
7
), pp.
1688
1694
.
29.
Kauffman
,
J. L.
,
Lesieutre
,
G. A.
, and
Babuška
,
V.
,
2014
, “
Damping Models for Shear Beams With Applications to Spacecraft Wiring Harnesses
,”
J. Spacecr. Rockets
,
51
(
1
), pp.
16
22
.
30.
McPherson
,
B. N.
,
Lesieutre
,
G. A.
, and
Kauffman
,
J. L.
,
2018
, “
Investigation of Viscous Damping Terms for a Timoshenko Beam
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
American Institute of Aeronautics and Astronautics
,
Kissimmee, FL
,
Jan. 8–12
, p.
456
.
31.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2019
, “
Coupled Dynamics of Cable-Harnessed Structures: Experimental Validation
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061001
.
32.
Martin
,
B.
, and
Salehian
,
A.
,
2017
, “
String-Harnessed Beam Structures: An Inverse Problem Approach for Model Approximation
,”
Proceedings of the 9th International Conference on Inverse Problems in Engineering
,
Waterloo, ON, Canada
,
May 23–26
, pp.
23
26
.
33.
Noor
,
A.
,
Anderson
,
M.
, and
Greene
,
W.
,
1978
, “
Continuum Models for Beam and Platelike Structures
,”
AIAA J.
,
16
(
12
), p.
1219
1228
.
34.
Noor
,
A. K.
, and
Andersen
,
C. M.
,
1979
, “
Analysis of Beam-Like Lattice Trusses
,”
Comput. Methods Appl. Mech. Eng.
,
20
(
1
), pp.
53
70
.
35.
Salehian
,
A.
, and
Inman
,
D. J.
,
2008
, “
Dynamic Analysis of a Lattice Structure by Homogenization: Experimental Validation
,”
J. Sound Vib.
,
316
(
1–5
), pp.
180
197
.
36.
Reddy
,
J. N.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
37.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
38.
Jones
,
R. M.
,
2014
,
Mechanics of Composite Materials
,
CRC Press
,
Boca Raton, FL
.
39.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
Wiley
,
New York
.
40.
“ANSYS® Academic Research Mechanical, Release 18.1.”
You do not currently have access to this content.