Abstract

Next-generation civil aircraft and atmospheric satellites will have high-aspect-ratio wings. Such a design necessitates successive analysis of static, frequency, and time-domain dynamic responses based on a three-dimensional nonlinear beam model. In this study, a new successive-analysis framework based on an absolute nodal coordinate formulation with mean artificial strains (ANCF-MAS) is developed. While retaining the advantages of other three-dimensional (3D) ANCF approaches, such as constancy of the mass matrix and absence of velocity-dependent terms, ANCF-MAS uses the elastic force of the mean artificial strains to remove cross-sectional deformations that cause locking problems. The equation becomes a differential equation with an easily linearized elastic force that enables not only static and dynamic analyses but also frequency analysis using standard eigenvalue solvers. The solutions converge to the analytical frequencies without suffering from locking problems. A proposed successive-analysis method with model-order reduction reveals that the frequencies vary with the nonlinear static deformation because of the 3D deformation coupling. This reduced-order model agrees well with nonlinear models even when the wing experiences a large nonlinear dynamic deformation.

References

1.
Afonso
,
F.
,
Vale
,
J.
,
Oliveira
,
É
,
Lau
,
F.
, and
Suleman
,
A.
,
2017
, “
A Review on Non-Linear Aeroelasticity of High Aspect-Ratio Wings
,”
Prog. Aerosp. Sci.
,
89
, pp.
40
57
. 10.1016/j.paerosci.2016.12.004
2.
Hesse
,
H.
,
Palacios
,
R.
, and
Murua
,
J.
,
2014
, “
Consistent Structural Linearization in Flexible Aircraft Dynamics With Large Rigid-Body Motion
,”
AIAA J.
,
52
(
3
), pp.
528
538
. 10.2514/1.J052316
3.
Hesse
,
H.
, and
Palacios
,
R.
,
2014
, “
Reduced-Order Aeroelastic Models for Dynamics of Maneuvering Flexible Aircraft
,”
AIAA J.
,
52
(
8
), pp.
1717
1732
. 10.2514/1.J052684
4.
Palacios
,
R.
,
Murua
,
J.
, and
Cook
,
R.
,
2010
, “
Structural and Aerodynamic Models in Nonlinear Flight Dynamics of Very Flexible Aircraft
,”
AIAA J.
,
48
(
11
), pp.
2648
2659
. 10.2514/1.J050513
5.
Hesse
,
H.
, and
Palacios
,
R.
,
2012
, “
Consistent Structural Linearisation in Flexible-Body Dynamics With Large Rigid-Body Motion
,”
Comput. Struct.
,
110–111
, pp.
1
14
. 10.1016/j.compstruc.2012.05.011
6.
Murua
,
J.
,
Palacios
,
R.
, and
Graham
,
J. M. R.
,
2012
, “
Assessment of Wake-Tail Interference Effects on the Dynamics of Flexible Aircraft
,”
AIAA J.
,
50
(
7
), pp.
1575
1585
. 10.2514/1.J051543
7.
Bauchau
,
O. A.
,
Han
,
S.
,
Mikkola
,
A.
,
Matikainen
,
M. K.
, and
Gruber
,
P.
,
2015
, “
Experimental Validation of Flexible Multibody Dynamics Beam Formulations
,”
Multibody Syst. Dyn.
,
34
(
4
), pp.
373
389
. 10.1007/s11044-014-9430-y
8.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1988
, “
On the Dynamics in Space of Rods Undergoing Large Motions—A Geometrically Exact Approach
,”
Comput. Methods Appl. Mech. Eng.
,
66
(
2
), pp.
125
161
. 10.1016/0045-7825(88)90073-4
9.
Borri
,
M.
, and
Merlini
,
T.
,
1986
, “
A Large Displacement Formulation for Anisotropic Beam Analysis
,”
Meccanica
,
21
(
1
), pp.
30
37
. 10.1007/BF01556314
10.
Danielson
,
D. A.
, and
Hodges
,
D. H.
,
1987
, “
Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
258
262
. 10.1115/1.3173004
11.
Bauchau
,
O. A.
, and
Hong
,
C. H.
,
1988
, “
Nonlinear Composite Beam Theory
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
156
163
. 10.1115/1.3173622
12.
Patil
,
M. J.
, and
Hodges
,
D. H.
,
2006
, “
Flight Dynamics of Highly Flexible Flying Wings
,”
J. Aircr.
,
43
(
6
), pp.
1790
1799
. 10.2514/1.17640
13.
Wang
,
Y.
,
Palacios
,
R.
, and
Wynn
,
A.
,
2015
, “
A Method for Normal-Mode-Based Model Reduction in Nonlinear Dynamics of Slender Structures
,”
Comput. Struct.
,
159
, pp.
26
40
. 10.1016/j.compstruc.2015.07.001
14.
Shearer
,
C. M.
, and
Cesnik
,
C. E. S.
,
2007
, “
Nonlinear Flight Dynamics of Very Flexible Aircraft
,”
J. Aircr.
,
44
(
5
), pp.
1528
1545
. 10.2514/1.27606
15.
Su
,
W.
, and
Cesnik
,
C. E. S.
,
2010
, “
Nonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft
,”
J. Aircr.
,
47
(
5
), pp.
1539
1553
. 10.2514/1.47317
16.
Su
,
W.
, and
Cesnik
,
C. E. S.
,
2014
, “
Strain-Based Analysis for Geometrically Nonlinear Beams: A Modal Approach
,”
J. Aircr.
,
51
(
3
), pp.
890
903
. 10.2514/1.C032477
17.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
. 10.1115/1.4023487
18.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
. 10.1115/1.1410100
19.
Lan
,
P.
, and
Shabana
,
A. A.
,
2010
, “
Rational Finite Elements and Flexible Body Dynamics
,”
ASME J. Vib. Acoust.
,
132
(
4
), p.
0410071
. 10.1115/1.4000970
20.
Mikkola
,
A. M.
, and
Matikainen
,
M. K.
,
2006
, “
Development of Elastic Forces for a Large Deformation Plate Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
2
), pp.
103
108
. 10.1115/1.1961870
21.
Olshevskiy
,
A.
,
Dmitrochenko
,
O.
, and
Kim
,
C. W.
,
2014
, “
Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021001
. 10.1115/1.4024910
22.
Kulkarni
,
S.
,
Pappalardo
,
C. M.
, and
Shabana
,
A. A.
,
2017
, “
Pantograph/Catenary Contact Formulations
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011010
. 10.1115/1.4035132
23.
Otsuka
,
K.
, and
Makihara
,
K.
,
2016
, “
Aeroelastic Deployable Wing Simulation Considering Rotation Hinge Joint Based on Flexible Multibody Dynamics
,”
J. Sound Vib.
,
369
, pp.
147
167
. 10.1016/j.jsv.2016.01.026
24.
Fan
,
W.
, and
Zhu
,
W. D.
,
2016
, “
An Accurate Singularity-Free Formulation of a Three-Dimensional Curved Euler–Bernoulli Beam for Flexible Multibody Dynamic Analysis
,”
ASME J. Vib. Acoust.
,
138
(
5
), p.
051001
. 10.1115/1.4033269
25.
Ren
,
H.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2018
, “
An Accurate and Robust Geometrically Exact Curved Beam Formulation for Multibody Dynamic Analysis
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011012
. 10.1115/1.4037513
26.
Kobayashi
,
N.
,
Wago
,
T.
, and
Sugawara
,
Y.
,
2011
, “
Reduction of System Matrices of Planar Beam in ANCF by Component Mode Synthesis Method
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
265
281
. 10.1007/s11044-011-9259-6
27.
Otsuka
,
K.
, and
Makihara
,
K.
,
2018
, “
Deployment Simulation Using Absolute Nodal Coordinate Plate Element for Next-Generation Aerospace Structures
,”
AIAA J.
,
56
(
3
), pp.
1266
1276
. 10.2514/1.J056477
28.
Kim
,
E.
,
Kim
,
H.
, and
Cho
,
M.
,
2017
, “
Model Order Reduction of Multibody System Dynamics Based on Stiffness Evaluation in the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
87
(
3
), pp.
1901
1915
. 10.1007/s11071-016-3161-y
29.
Otsuka
,
K.
,
Wang
,
Y.
, and
Makihara
,
K.
,
2017
, “
Deployable Wing Model Considering Structural Flexibility and Aerodynamic Unsteadiness for Deployment System Design
,”
J. Sound Vib.
,
408
, pp.
105
122
. 10.1016/j.jsv.2017.07.012
30.
Otsuka
,
K.
,
Wang
,
Y.
, and
Makihara
,
K.
,
2019
, “
Versatile Absolute Nodal Coordinate Formulation Model for Dynamic Folding Wing Deployment and Flutter Analyses
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011014
. 10.1115/1.4041022
31.
Von Dombrowski
,
S.
,
2002
, “
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
,”
Multibody Syst. Dyn.
,
8
(
4
), pp.
409
432
. 10.1023/A:1021158911536
32.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2007
, “
A Curved Beam Element in the Analysis of Flexible Multi-Body Systems Using the Absolute Nodal Coordinates
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn.
,
221
(
2
), pp.
219
231
. 10.1243/1464419JMBD86
33.
Otsuka
,
K.
, and
Makihara
,
K.
,
2019
, “
Absolute Nodal Coordinate Beam Element for Modeling Flexible and Deployable Aerospace Structures
,”
AIAA J.
,
57
(
3
), pp.
1343
1346
. 10.2514/1.J057780
34.
Otsuka
,
K.
, and
Makihara
,
K.
,
2019
, “
ANCF-ICE Beam Element for Modeling Highly Flexible and Deployable Aerospace Structures
,”
Proceedings of the AIAA Scitech 2019 Forum
,
AIAA 2019-0213
,
San Diego, CA
,
Jan. 7–11
. 10.2514/6.2019-0213
35.
Otsuka
,
K.
,
Wang
,
Y.
,
Fujita
,
K.
,
Nagai
,
H.
, and
Makihara
,
K.
,
2019
, “
Multifidelity Modeling of Deployable Wings: Multibody Dynamic Simulation and Wind Tunnel Experiment
,”
AIAA J.
,
57
(
10
), pp.
4300
4311
. 10.2514/1.J058676
36.
Romero
,
I.
,
2008
, “
A Comparison of Finite Elements for Nonlinear Beams: The Absolute Nodal Coordinate and Geometrically Exact Formulations
,”
Multibody Syst. Dyn.
,
20
(
1
), pp.
51
68
. 10.1007/s11044-008-9105-7
37.
Bauchau
,
O. A.
,
Han
,
S.
,
Mikkola
,
A.
, and
Matikainen
,
M. K.
,
2014
, “
Comparison of the Absolute Nodal Coordinate and Geometrically Exact Formulations for Beams
,”
Multibody Syst. Dyn.
,
32
(
1
), pp.
67
85
. 10.1007/s11044-013-9374-7
38.
Bauchau
,
O. A.
,
Betsch
,
P.
,
Cardona
,
A.
,
Gerstmayr
,
J.
,
Jonker
,
B.
,
Masarati
,
P.
, and
Sonneville
,
V.
,
2016
, “
Validation of Flexible Multibody Dynamics Beam Formulations Using Benchmark Problems
,”
Multibody Syst. Dyn.
,
37
(
1
), pp.
29
48
. 10.1007/s11044-016-9514-y
39.
Marino
,
E.
,
2016
, “
Isogeometric Collocation for Three-Dimensional Geometrically Exact Shear-Deformable Beams
,”
Comput. Methods Appl. Mech. Eng.
,
307
, pp.
383
410
. 10.1016/j.cma.2016.04.016
40.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
. 10.1016/j.cma.2004.10.008
41.
Auricchio
,
F.
,
Da Veiga
,
L. B.
,
Hughes
,
T. J. R.
,
Reali
,
A.
, and
Sangalli
,
G.
,
2010
, “
Isogeometric Collocation Methods
,”
Math. Models Methods Appl. Sci.
,
20
(
11
), pp.
2075
2107
. 10.1142/S0218202510004878
42.
Otsuka
,
K.
, and
Makihara
,
K.
,
2016
, “
Parametric Studies for the Aeroelastic Analysis of Multibody Wings
,”
Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
,
14
(
ists30
), pp.
Pc_33
Pc_42
. 10.2322/tastj.14.Pc_33
43.
Zheng
,
Y.
,
Shabana
,
A. A.
, and
Zhang
,
D.
,
2018
, “
Curvature Expressions for the Large Displacement Analysis of Planar Beam Motions
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011013
. 10.1115/1.4037226
44.
Belytschko
,
T.
, and
Leviathan
,
I.
,
1994
, “
Physical Stabilization of the 4-Node Shell Element With One Point Quadrature
,”
Comput. Methods Appl. Mech. Eng.
,
113
(
3–4
), pp.
321
350
. 10.1016/0045-7825(94)90052-3
45.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
614
621
. 10.1115/1.1410099
46.
Dufva
,
K. E.
,
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2005
, “
A Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
280
(
3–5
), pp.
719
738
. 10.1016/j.jsv.2003.12.044
47.
Yashiro
,
S.
, and
Okabe
,
T.
,
2015
, “
Smoothed Particle Hydrodynamics in a Generalized Coordinate System With a Finite-Deformation Constitutive Model
,”
Int. J. Numer. Methods Eng.
,
103
(
11
), pp.
781
797
. 10.1002/nme.4906
48.
Patel
,
M.
, and
Shabana
,
A. A.
,
2018
, “
Locking Alleviation in the Large Displacement Analysis of Beam Elements: The Strain Split Method
,”
Acta Mech.
,
229
(
7
), pp.
2923
2946
. 10.1007/s00707-018-2131-5
49.
del Carre
,
A.
,
Muñoz-Simón
,
A.
,
Goizueta
,
N.
, and
Palacios
,
R.
,
2019
, “
SHARPy: A Dynamic Aeroelastic Simulation Toolbox for Very Flexible Aircraft and Wind Turbines
,”
J. Open Source Software
,
4
(
44
), p.
1885
. 10.21105/joss.01885
50.
Werter
,
N. P. M.
, and
De Breuker
,
R.
,
2016
, “
A Novel Dynamic Aeroelastic Framework for Aeroelastic Tailoring and Structural Optimisation
,”
Compos. Struct.
,
158
, pp.
369
386
. 10.1016/j.compstruct.2016.09.044
51.
Otsuka
,
K.
,
Wang
,
Y.
, and
Makihara
,
K.
,
2021
, “
Absolute Nodal Coordinate Formulation With Vector-Strain Transformation for High Aspect Ratio Wings
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
1
), p.
011007
. 10.1115/1.4049028
52.
Fujita
,
K.
, and
Nagai
,
H.
,
2017
, “
Robustness Analysis on Aerial Deployment Motion of a Mars Aircraft Using Multibody Dynamics Simulation: Effects of Wing-Unfolding Torque and Timing
,”
Aeronaut. J.
,
121
(
1238
), pp.
449
468
. 10.1017/aer.2016.123
You do not currently have access to this content.