Abstract

The transfer matrix method (TMM) has become an established and widely used approach to compute the sound absorption coefficient of a multilayer structure. Due to the assumption made by this method of laterally infinite media, it is necessary to introduce in the computation the finite-size radiation impedance of the investigated system, in order to obtain an accurate prediction of the sound absorption coefficient within the entire frequency range of interest; this is generally referred to as finite transfer matrix method (FTMM). However, it has not been extensively investigated the possibility of using the FTMM to accurately approximate the sound absorption of flat porous samples experimentally determined in an Alpha Cabin, a small reverberation room employed in the automotive industry. To this purpose, a simulation-based round robin test was organized involving academic and private research groups. Four different systems constituted by five porous materials, whose properties were experimentally characterized, were considered. Each participant, provided with all the mechanical and physical properties of each medium, was requested to simulate the sound absorption coefficient with an arbitrary chosen code, based on the FTMM. The results indicated a good accuracy of the different formulations to determine the finite-size radiation impedance. However, its implementation in the computation of the sound absorption coefficient as well as the upper limit of the range of incidence angles within which the acoustic field is simulated, and the model adopted to describe each material, significantly influenced the results.

References

1.
ISO 354:2003
,
2003
.
Acoustics—Measurement of sound absorption in a reverberation room
.
Standard, International Organization for Standardization
,
Geneva, Switzerland
.
2.
ASTM C423-17
,
2017
.
Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method
.
Standard, ASTM International
,
West Conshohocken, PA
.
3.
Bonfiglio
,
P.
,
Pompoli
,
F.
, and
Lionti
,
R.
,
2016
, “
A Reduced-Order Integral Formulation to Account for the Finite Size Effect of Isotropic Square Panels Using the Transfer Matrix Method
,”
J. Acoustical Soc. Am.
,
139
(
4
), pp.
1773
1783
. 10.1121/1.4945717
4.
Allard
,
J.
, and
Atalla
,
N.
,
2009
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd edn.
John Wiley & Sons Ltd.
,
Chichester, UK
.
5.
Nolan
,
M.
,
Fernandez-Grande
,
E.
,
Brunskog
,
J.
, and
Jeong
,
C.-H.
,
2018
, “
A Wavenumber Approach to Quantifying the Isotropy of the Sound Field in Reverberant Spaces
,”
J. Acoustical Soc. Am.
,
143
(
4
), pp.
2514
2526
. 10.1121/1.5032194
6.
Jeong
,
C.-H.
,
2013
, “
Converting Sabine Absorption Coefficients to Random Incidence Absorption Coefficients
,”
J. Acoustical Soc. Am.
,
133
(
6
), pp.
3951
3962
. 10.1121/1.4802647
7.
Jeong
,
C.-H.
, and
Chang
,
J.-H.
,
2015
, “
Reproducibility of the Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient
,”
Acta Acustica United With Acustica
,
101
(
1
), pp.
99
112
. 10.3813/AAA.918808
8.
Shtrepi
,
L.
, and
Prato
,
A.
,
2020
, “
Towards a Sustainable Approach for Sound Absorption Assessment of Building Materials: Validation of Small-scale Reverberation Room Measurements
,”
Appl. Acoustics
,
165
, p.
107304
. 10.1016/j.apacoust.2020.107304.
9.
Bécot
,
F.-X.
, and
Rodenas
,
J.
,
2016
, “
Predicting Alpha Cabin Sound Absorption in An Industrial Context
,”
In
INTER-NOISE and NOISE-CON Congress and Conference Proceedings
,
Hamburg, Germany
,
Aug. 21–24
, Vol.
253
, pp.
4648
4658
.
10.
Duval
,
A.
,
Rondeau
,
J.-F.
,
Dejaeger
,
L.
,
Sgard
,
F.
, and
Atalla
,
N.
,
2010
, “
Diffuse Field Absorption Coefficient Simulation of Porous Materials in Small Reverberant Rooms: Finite Size and Diffusivity Issues
,” In
Proceedings of the 10ème Congrès Fançaise d’Acoustique
,
Lyon, France
,
Apr. 12–16
, Société Française d'Acoustique.
11.
Saha
,
P.
,
Pan
,
J.
, and
Veen
,
J. R.
,
2009
,
Thoughts Behind Developing SAE Standard J2883-Random Incidence Sound Absorption Tests Using a Small Reverberation Room
.
Technical Report, SAE Technical Paper 2009-01-2141
.
12.
Bertolini
,
C.
, and
Guj
,
L.
,
2011
, “
Numerical Simulation of the Measurement of the Diffuse Field Absorption Coefficient in Small Reverberation Rooms
,”
SAE International Journal of Passenger Cars-Mechanical Systems
,
4
(
2011-01-1641
), pp.
1168
1194
. 10.4271/2011-01-1641
13.
Chappuis
,
A.
,
1993
,
Small Size Devices for Accurate Acoustical Measurements of Materials and Parts used in Automobiles
.
Technical Report, SAE Technical Paper 931266
.
14.
Lauriks
,
W.
,
Mees
,
P.
, and
Allard
,
J. F.
,
1992
, “
The Acoustic Transmission Through Layered Systems
,”
J. Sound. Vib.
,
155
(
1
), pp.
125
132
. 10.1016/0022-460X(92)90650-M
15.
Munjal
,
M. L.
,
1993
, “
Response of a Multi-Layered Infinite Plate to An Oblique Plane Wave by Means of Transfer Matrices
,”
J. Sound. Vib.
,
162
(
2
), pp.
333
343
. 10.1006/jsvi.1993.1122
16.
Brouard
,
B.
,
Lafarge
,
D.
, and
Allard
,
J.-F.
,
1995
, “
A General Method of Modelling Sound Propagation in Layered Media
,”
J. Sound. Vib.
,
183
(
1
), pp.
129
142
. 10.1006/jsvi.1995.0243
17.
Atalla
,
N.
,
Sgard
,
F.
, and
Amedin
,
C. K.
,
2006
, “
On the Modeling of Sound Radiation From Poroelastic Materials
,”
J. Acoustical Soc. Am.
,
120
(
4
), pp.
1990
1995
. 10.1121/1.2261244
18.
Santoni
,
A.
,
Davy
,
J. L.
,
Fausti
,
P.
, and
Bonfiglio
,
P.
,
2020
, “
A Review of the Different Approaches to Predict the Sound Transmission Loss of Building Partitions
,”
Building Acoustics
,
27
(
3
), pp.
253
279
. 10.1177/1351010X20911599
19.
Thomasson
,
S.-I.
,
1980
, “
On the Absorption Coefficient
,”
Acta Acustica United With Acustica
,
44
(
4
), pp.
265
273
.
20.
Thomasson
,
S.-I.
,
1982
,
Theory and Experiments on the Sound Absorption as a Function of Area
,
Technical Report
,
Royal Institute of Technology
,
Stockholm, Sweden
.
21.
Villot
,
M.
,
Guigou
,
C.
, and
Gagliardini
,
L.
,
2001
, “
Predicting the Acoustical Radiation of Finite Size Multi-Layered Structures by Applying Spatial Windowing on Infinite Structures
,”
J. Sound. Vib.
,
245
(
3
), pp.
433
455
. 10.1006/jsvi.2001.3592
22.
Villot
,
M.
, and
Guigou-Carter
,
C.
,
2005
, “
Using Spatial Windowing to Take the Finite Size of Plane Structures Into Account in Sound Transmission
,” In
NOVEM Conference
,
Saint Raphael, France
,
April 18–21
.
23.
Vigran
,
T. E.
,
2009
, “
Predicting the Sound Reduction Index of Finite Size Specimen by a Simplified Spatial Windowing Technique
,”
J. Sound. Vib.
,
325
(
3
), pp.
507
512
. 10.1016/j.jsv.2009.04.032
24.
Ghinet
,
S.
, and
Atalla
,
N.
,
2001
, “
Sound Transmission Loss of Insulating Complex Structures
,”
Canadian Acoustics
,
29
(
3
), pp.
26
27
.
25.
Rhazi
,
D.
, and
Atalla
,
N.
,
2010
, “
A Simple Method to Account for Size Effects in the Transfer Matrix Method
,”
J. Acoust. Soc. Am.
,
127
(
2
), pp.
EL30
EL36
. 10.1121/1.3280237
26.
Delany
,
M.
, and
Bazley
,
E.
,
1970
, “
Acoustical Properties of Fibrous Absorbent Materials
,”
Appl. Acoustics
,
3
(
2
), pp.
105
116
. 10.1016/0003-682X(70)90031-9
27.
Miki
,
Y.
,
1990
, “
Acoustical Properties of Porous Materials - Modifications of Delany-Bazley Models
,”
J. Acoustical Soc. Japan (E)
,
11
(
1
), pp.
19
24
. 10.1250/ast.11.19
28.
Miki
,
Y.
,
1990
, “
Acoustical Properties of Porous Materials—Generalizations of Empirical Models
,”
J. Acoustical Soc. Japan (E)
,
11
(
1
), pp.
25
28
. 10.1250/ast.11.25
29.
Johnson
,
D. L.
,
Koplik
,
J.
, and
Dashen
,
R.
,
1987
, “
Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media
,”
J. Fluid. Mech.
,
176
(
1
), pp.
379
402
. 10.1017/S0022112087000727
30.
Champoux
,
Y.
, and
Allard
,
J.-F.
,
1991
, “
Dynamic Tortuosity and Bulk Modulus in Air-Saturated Porous Media
,”
J. Appl. Phys.
,
70
(
4
), pp.
1975
1979
. 10.1063/1.349482
31.
Panneton
,
R.
,
2007
, “
Comments on the Limp Frame Equivalent Fluid Model for Porous Media
,”
J. Acoustical Soc. Am.
,
122
(
6
), pp.
EL217
EL222
. 10.1121/1.2800895
32.
Atalla
,
N.
, and
Sgard
,
F.
,
2007
, “
Modeling of Perforated Plates and Screens Using Rigid Frame Porous Models
,”
J. Sound. Vib.
,
303
(
1–2
), pp.
195
208
. 10.1016/j.jsv.2007.01.012
33.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range
,”
J. Acoustical Soc. Am.
,
28
(
2
), pp.
168
178
. 10.1121/1.1908239
34.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoustical Soc. Am.
,
28
(
2
), pp.
179
191
. 10.1121/1.1908241
35.
Bécot
,
F.-X.
, and
Jaouen
,
L.
,
2013
, “
An Alternative Biot’s Formulation for Dissipative Porous Media With Skeleton Deformation
,”
J. Acoustical Soc. Am.
,
134
(
6
), pp.
4801
4807
. 10.1121/1.4826175
36.
Jaouen
,
L.
, and
Bécot
,
F.-X.
,
2011
, “
Acoustical Characterization of Perforated Facings
,”
J. Acoustical Soc. Am.
,
129
(
3
), pp.
1400
1406
. 10.1121/1.3552887
37.
ISO 9053:1991
,
1991
.
Acoustics—Materials for acoustical applications—Determination of Airflow Resistance
.
Standard, International Organization for Standardization
,
Geneva, CH
.
38.
Pompoli
,
F.
, and
Bonfiglio
,
P.
,
2007
, “
Apparatus for Measuring Porosity Open Cell Porous Media (in Italian)
,”
In
Proceedings of the 34th Acoustical Society of Italy National Conference
,
Florence, Italy
,
June 13–15
, Acoustical Society of Italy.
39.
Champoux
,
Y.
,
Stinson
,
M. R.
, and
Daigle
,
G. A.
,
1991
, “
Air-based System for the Measurement of Porosity
,”
J. Acoustical Soc. Am.
,
89
(
2
), pp.
910
916
. 10.1121/1.1894653
40.
Bonfiglio
,
P.
, and
Pompoli
,
F.
,
2007
, “
Frequency Dependent Tortuosity Measurement by Means of Ultrasonic Tests
,” In
Proceedings of the 14th International Congress on Sound and Vibration
, Vol.
14
.
Cairns, Australia
,
July 9–12
, pp.
1
16
, Australian Acoustical Society.
41.
Bonfiglio
,
P.
, and
Pompoli
,
F.
,
2013
, “
Inversion Problems for Determining Physical Parameters of Porous Materials: Overview and Comparison Between Different Methods
,”
Acta Acustica United With Acustica
,
99
(
3
), pp.
341
351
. 10.3813/AAA.918616
42.
Bonfiglio
,
P.
,
Pompoli
,
F.
,
Horoshenkov
,
K. V.
,
Rahim
,
M. I. B. S. A.
,
Jaouen
,
L.
,
Rodenas
,
J.
,
Bécot
,
F.-X.
,
Gourdon
,
E.
,
Jaeger
,
D.
,
Kursch
,
V.
,
Tarello
,
M.
,
Roozen
,
N. B.
,
Glorieux
,
C.
,
Ferrian
,
F.
,
Leroy
,
P.
,
Briatico Vangosa
,
F.
,
Dauchez
,
N.
,
Foucart
,
F.
,
Lei
,
L.
,
Carillo
,
K.
,
Doutres
,
O.
,
Sgard
,
F.
,
Panneton
,
R.
,
Verdiere
,
K.
,
Bertolini
,
C.
,
Bär
,
R.
,
Groby
,
J.-P.
,
Geslain
,
A.
,
Poulain
,
N.
,
Rouleau
,
L.
,
Guinault
,
A.
,
Ahmadi
,
H.
, and
Forget
,
C.
,
2018
, “
How Reproducible Are Methods to Measure the Dynamic Viscoelastic Properties of Poroelastic Media?
,”
J. Sound. Vib.
,
428
, pp.
26
43
. 10.1016/j.jsv.2018.05.006
43.
Rebillard
,
P.
,
Allard
,
J.-F.
,
Depollier
,
C.
,
Guignouard
,
P.
,
Lauriks
,
W.
,
Verhaegen
,
C.
, and
Cops
,
A.
,
1992
, “
The Effect of a Porous Facing on the Impedance and the Absorption Coefficient of a Layer of Porour Material
,”
J. Sound. Vib.
,
156
(
3
), pp.
541
555
. 10.1016/0022-460X(92)90743-H
44.
Veen
,
J. R.
, and
Saha
,
P.
,
2003
,
Feasibility of a Standardized Test Procedure for Random Incidence Sound Absorption Tests Using a Small Size Reverberation Room
.
Technical Report, SAE Technical Paper 2003-01-1572
.
45.
Veen
,
J. R.
,
Pan
,
J.
, and
Saha
,
P.
,
2005
,
Development of a Small Size Reverberation Room Standardized Test Procedure for Random Incidence Sound Absorption Testing
.
Technical Report, SAE Technical Paper 2005-01-2284
.
You do not currently have access to this content.