The present research is concerned with the free vibrations and energy transfer of a vibrating gyroscope, which is composed of a flexible beam with surrounded piezoelectric films in a rotating space. The governing equations involve nonlinear curvature, and rotary inertia of an in-extensional rotating piezoelectric beam is obtained by using the transformation of two Euler angles and the extended Hamilton principle. The gyroscopic effect due to the rotating angular speed is investigated in the frame of complex modes based on the invariant manifold method. The effects of angular speed, initial values, and electrical resistance to the nonlinear natural frequencies of a rotating piezoelectric beam are studied by both linear and nonlinear decoupling methods. The results reveal that the rotation causes one nonlinear frequency to bifurcate into a pair of frequencies: one forward and one backward nonlinear frequencies. The variation of the frequency with the angular speed is used to measure the angular speed. Finally, the energy transfer due to nonlinear coupling under 1:1 internal resonance condition and the energy transfer due to the linear gyroscopic decoupling are investigated.

References

1.
Lajimi
,
S. A. M.
,
Heppler
,
G. R.
, and
Abdel-Rahman
,
E. M.
,
2017
, “
A Mechanical–Thermal Noise Analysis of a Nonlinear Microgyroscope
,”
Mech. Syst. Signal Process.
,
83
, pp.
163
175
.
2.
Mojahedi
,
M.
,
Ahmadian
,
M. T.
, and
Firoozbakhsh
,
K.
,
2014
, “
The Influence of the Intermolecular Surface Forces on the Static Deflection and Pull-In Instability of the Micro/Nano Cantilever Gyroscopes
,”
Compos. Part B
,
56
, pp.
336
343
.
3.
Yang
,
J. S.
, and
Fang
,
H. Y.
,
2002
, “
Analysis of a Rotating Elastic Beam With Piezoelectric Films as an Angular Rate Sensor
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
49
(
6
), pp.
798
804
.
4.
Bhadbhade
,
V.
,
Jahli
,
N.
, and
Mahmoodi
,
S. N.
,
2008
, “
A Novel Piezoelectrically Actuated Flexural/Torsional Vibrating Beam Gyroscope
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1305
1324
.
5.
Kagawa
,
Y.
,
Wakatsuki
,
N.
,
Tsuchiya
,
T.
, and
Terada
,
Y.
,
2006
, “
A Tubular Piezoelectric Vibrator Gyroscope
,”
IEEE Sens. J.
,
6
(
2
), pp.
325
330
.
6.
Wang
,
Z.
,
Zhao
,
M. H.
, and
Yang
,
J. S.
,
2015
, “
A Piezoelectric Gyroscope With Self-Equilibrated Coriolis Force Based on Overtone Thickness-Shear Modes of a Lithium Niobate Plate With an Inversion Layer
,”
IEEE Sens. J.
,
15
(
3
), pp.
1794
1799
.
7.
Lajimi
,
S. A. M.
,
Heppler
,
G. R.
, and
Abdel-Rahman
,
E. M.
,
2015
, “
Primary Resonance of a Beam-Rigid Body Microgyroscope
,”
Int. J. Nonlin. Mech.
,
77
, pp.
364
375
.
8.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2016
, “
Size-Dependent Large-Amplitude Oscillations of Microcantilevers
,”
Microsystem Tech
,
23
(
8
), pp.
3477
3488
.
9.
Sturla
,
F. A.
, and
Argento
,
A.
,
1996
, “
Free and Forced Vibrations of a Spinning Viscoelastic Beam
,”
J. Vib. Acoust.
,
118
(
3
), pp.
463
468
.
10.
Ji
,
Z.
, and
Zu
,
J. W.
,
1998
, “
Method of Multiple Scales for Vibration Analysis of Rotor-Shaft Systems With Non-Linear Bearing Pedestal Model
,”
J. Sound Vib.
,
218
(
2
), pp.
293
305
.
11.
Sheu
,
G. J.
, and
Yang
,
S. M.
,
2005
, “
Dynamic Analysis of a Spinning Rayleigh Beam
,”
Int. J. Mech. Sci.
,
47
(
2
), pp.
157
169
.
12.
Yang
,
X. D.
,
An
,
H. Z.
,
Qian
,
Y. J.
,
Zhang
,
W.
, and
Yao
,
M. H.
,
2016
, “
Elliptic Motions and Control of Rotors Suspending in Active Magnetic Bearings
,”
ASME J. Comput. Nonlin. Dyn.
,
11
(
5
), p.
054503
.
13.
Hosseini
,
S. A. A.
, and
Khadem
,
S. E.
,
2009
, “
Free Vibrations Analysis of a Rotating Shaft With Nonlinearities in Curvature and Inertia
,”
Mech. Mach. Theory
,
44
(
1
), pp.
272
288
.
14.
Hosseini
,
S. A. A.
, and
Zamanian
,
M.
,
2013
, “
Multiple Scales Solution for Free Vibrations of a Rotating Shaft With Stretching Nonlinearity
,”
Sci. Iran.
,
20
(
1
), pp.
131
140
.
15.
Shahgholi
,
M.
,
Khadem
,
S. E.
, and
Bab
,
S.
,
2014
, “
Free Vibration Analysis of a Nonlinear Slender Rotating Shaft With Simply Support Conditions
,”
Mech. Mach. Theory
,
82
, pp.
128
140
.
16.
Seshia
,
A. A.
,
2002
, “
Integrated Micromechanical Resonant Sensors for Inertial Measurement Systems
,” PhD dissertation,
University of California
,
Berkeley
.
17.
Esmaeili
,
M.
,
Jalili
,
N.
, and
Durali
,
M.
,
2007
, “
Dynamic Modeling and Performance Evaluation of a Vibrating Beam Microgyroscope Under General Support Motion
,”
J. Sound Vib.
,
301
, pp.
146
164
.
18.
Nayfeh
,
A. H.
,
Abdel-Rahman
,
E. M.
, and
Ghommem
,
M.
,
2015
, “
A Novel Differential Frequency Micro-Gyroscope
,”
J. Vib. Control
,
21
(
5
), pp.
872
882
.
19.
Ghommem
,
M.
, and
Abdelkefi
,
A.
,
2017
, “
Performance Analysis of Differential-Frequency Microgyroscopes Made of Nanocrystalline Material
,”
Int. J. Mech. Sci.
,
133
, pp.
495
503
.
20.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1991
, “
Nonlinear Normal-Modes and Invariant-Manifolds
,”
J. Sound Vib.
,
150
(
1
), pp.
170
173
.
21.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal-Modes for Nonlinear Vibratory-Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.
22.
Boivin
,
N.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
1995
, “
Nonlinear Normal-Modes, Invariance, and Modal Dynamics Approximations of Nonlinear-Systems
,”
Nonlin. Dyn.
,
8
(
3
), pp.
315
346
.
23.
Boivin
,
N.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
1995
, “
Nonlinear Modal-Analysis of Structural Systems Featuring Internal Resonances
,”
J. Sound Vib.
,
182
(
2
), pp.
336
341
.
24.
Brake
,
M. R.
, and
Wickert
,
J. A.
,
2010
, “
Modal Analysis of a Continuous Gyroscopic Second-Order System With Nonlinear Constraints
,”
J. Sound Vib.
,
329
(
7
), pp.
893
911
.
25.
Yang
,
X. D.
,
Liu
,
M.
,
Qian
,
Y. J.
,
Yang
,
S.
, and
Zhang
,
W.
,
2017
, “
Linear and Nonlinear Modal Analysis of the Axially Moving Continua Based on the Invariant Manifold Method
,”
Acta Mech.
,
228
(
2
), pp.
465
474
.
26.
Yang
,
X. D.
,
Wu
,
H.
,
Qian
,
Y. J.
,
Zhang
,
W.
, and
Lim
,
C. W.
,
2017
, “
Nonlinear Vibration Analysis of Axially Moving Strings Based on Gyroscopic Modes Decoupling
,”
J. Sound Vib.
,
393
, pp.
308
320
.
27.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley Interscience
,
New York
.
28.
Hamed
,
Y. S.
,
EL-Sayed
,
A. T.
, and
El-Zahar
,
E. R.
,
2016
, “
On Controlling the Vibrations and Energy Transfer in MEMS Gyroscope System With Simultaneous Resonance
,”
Nonlin. Dyn.
,
83
(
3
), pp.
1687
1704
.
29.
Gourdon
,
E.
,
Savadkoohi
,
A. T.
, and
Vargas
,
V. A.
,
2018
, “
Targeted Energy Transfer From One Acoustical Mode to an Helmholtz Resonator With Nonlinear Behavior
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061005
.
30.
Hosseini
,
S. A. A.
,
Zamanian
,
M.
,
Shams
,
S.
, and
Shooshtari
,
A.
,
2014
, “
Vibration Analysis of Geometrically Nonlinear Spinning Beams
,”
Mech. Mach. Theory
,
78
, pp.
15
35
.
31.
Zhu
,
K. F.
, and
Chung
,
J. T.
,
2016
, “
Dynamic Modeling and Analysis of a Spinning Rayleigh Beam Under Deployment
,”
Int. J. Mech. Sci.
,
115
, pp.
392
405
.
32.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
,
2004
,
Linear and Nonlinear Structural Mechanics
,
Wiley Interscience
,
New York
.
33.
Dadfarnia
,
M.
,
Jalili
,
N.
,
Liu
,
Z. Y.
, and
Dawson
,
D. M.
,
2004
, “
An Observer-Based Piezoelectric Control of Flexible Cartesian Robot Arms: Theory and Experiment
,”
Control Eng. Pract.
,
12
(
8
), pp.
1041
1053
.
34.
Mahmoodi
,
S. N.
,
Afshari
,
M.
, and
Jahli
,
N.
,
2008
, “
Nonlinear Vibrations of Piezoelectric Microcantilevers for Biologically-Induced Surface Stress Sensing
,”
Commun. Nonlin. Sci. Numer. Simul.
,
13
(
9
), pp.
1964
1977
.
35.
Luan
,
X. L.
,
Wang
,
Y.
,
Jin
,
X. L.
, and
Huang
,
Z. L.
,
2018
, “
Optimal Locations of Piezoelectric Patch on Wideband Random Point-Driven Beam for Energy Harvesting
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011014
.
You do not currently have access to this content.