In this work, exact closed-form solutions are derived for optimizing the resonant shunt circuits of electromagnetic shunt dampers (EMSDs), which use an electromagnetic transducer, and piezoelectric shunt dampers (PZSDs), which use a piezoelectric element, shunted with an electric circuit. Modeling of the EMSD and PZSD is unified by nondimensional parameters. The optimization criteria selected for the EMSD and PZSD are H-norm minimization, H2-norm minimization, and exponential time-decay rate maximization. The aim of this study is to derive for the first time the exact solutions that have not previously been investigated, including cases that consider the inherent damping of the primary system. This paper comprehensively summarizes the exact solutions based on the optimization criteria together with approximated solutions obtained by the fixed-point method, which is commonly used to optimize the dynamic vibration absorber (DVA).

References

1.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Dover Publications
, New York.
2.
Nishihara
,
O.
, and
Matsuhisa
,
H.
,
1997
, “
Design of a Dynamic Vibration Absorber for Minimization of Maximum Amplitude Magnification Factor (Derivation of Algebraic Exact Solution) (in Japanese)
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
63
(
614
), pp.
3438
3445
.
3.
Nishihara
,
O.
, and
Asami
,
T.
,
2002
, “
Closed-form Solutions to the Exact Optimizations of Dynamic Vibration Absorbers (Minimizations of the Maximum Amplitude Magnification Factors)
,”
ASME J. Vib. Acoust.
,
124
(
4
), pp.
576
582
.
4.
Asami
,
T.
, and
Nishihara
,
O.
,
2003
, “
Closed-Form Exact Solution to H∞ Optimization of Dynamic Vibration Absorbers (Application to Different Transfer Functions and Damping Systems)
,”
ASME J. Vib. Acoust.
,
125
(
3
), pp.
398
405
.
5.
Cheung
,
Y. L.
, and
Wong
,
W. O.
,
2011
, “
H-Infinity Optimization of a Variant Design of the Dynamic Vibration Absorber-Revisited and New Results
,”
J. Sound Vib.
,
330
(
16
), pp.
3901
3912
.
6.
Ren
,
M.
,
2001
, “
A Variant Design of the Dynamic Vibration Absorber
,”
J. Sound Vib.
,
245
(
4
), pp.
762
770
.
7.
Chun
,
S.
,
Lee
,
Y.
, and
Kim
,
T.-H.
,
2015
, “
H∞ Optimization of Dynamic Vibration Absorber Variant for Vibration Control of Damped Linear Systems
,”
J. Sound Vib.
,
335
, pp.
55
65
.
8.
Anh
,
N. D.
,
Nguyen
,
N. X.
, and
Quan
,
N. H.
,
2016
, “
Global-Local Approach to the Design of Dynamic Vibration Absorber for Damped Structures
,”
J. Vib. Control
,
22
(
14
), pp.
3182
3201
.
9.
Argentini
,
T.
,
Belloli
,
M.
, and
Borghesani
,
P.
,
2015
, “
A Closed-Form Optimal Tuning of Mass Dampers for One Degree-of-Freedom Systems Under Rotating Unbalance Forcing
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
034501
.
10.
Barredo
,
E.
,
Blanco
,
A.
,
Colín
,
J.
,
Penagos
,
V. M.
,
Abúndez
,
A.
,
Vela
,
L. G.
,
Meza
,
V.
,
Cruz
,
R. H.
, and
Mayén
,
J.
,
2018
, “
Closed-Form Solutions for the Optimal Design of Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
144
, pp.
41
53
.
11.
Sinha
,
A.
, and
Trikutam
,
K. T.
,
2018
, “
Optimal Vibration Absorber With a Friction Damper
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021015
.
12.
Nishihara
,
O.
,
2019
, “
Exact Optimization of a Three-Element Dynamic Vibration Absorber: Minimization of the Maximum Amplitude Magnification Factor
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011001
.
13.
Hu
,
Y.
, and
Chen
,
M. Z.
,
2015
, “
Performance Evaluation for Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
99
, pp.
297
307
.
14.
Asami
,
T.
,
Mizukawa
,
Y.
, and
Ise
,
T.
,
2018
, “
Optimal Design of Double-Mass Dynamic Vibration Absorbers Minimizing the Mobility Transfer Function
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061012
.
15.
Cheung
,
Y. L.
, and
Wong
,
W. O.
,
2011
, “
H2 Optimization of a Non-Traditional Dynamic Vibration Absorber for Vibration Control of Structures Under Random Force Excitation
,”
J. Sound Vib.
,
330
(
6
), pp.
1039
1044
.
16.
Asami
,
T.
,
Wakasono
,
T.
,
Kameoka
,
K.
,
Hasegawa
,
M.
, and
Sekiguchi
,
H.
,
1991
, “
Optimum Design of Dynamic Absorbers for a System Subjected to Random Excitation
,”
JSME Int. J. Ser. 3, Vib., Control Eng., Ind.
,
34
(
2
), pp.
218
226
.
17.
Asami
,
T.
,
Nishihara
,
O.
, and
Baz
,
A. M.
,
2002
, “
Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
284
295
.
18.
Nishihara
,
O.
, and
Matsuhisa
,
H.
,
1997
, “
Design and Tuning of Vibration Control Devices Via Stability Criterion (in Japanese)
,”
Dynamics and Design Conference
, Tokyo, Japan, pp.
165
168
.
19.
Bisegna
,
P.
, and
Caruso
,
G.
,
2012
, “
Closed-Form Formulas for the Optimal Pole-Based Design of Tuned Mass Dampers
,”
J. Sound Vib.
,
331
(
10
), pp.
2291
2314
.
20.
Xiang
,
P.
, and
Nishitani
,
A.
,
2015
, “
Optimum Design and Application of Non-Traditional Tuned Mass Damper Toward Seismic Response Control With Experimental Test Verification
,”
Earthquake Eng. Struct. Dyn.
,
44
(
13
), pp.
2199
2220
.
21.
Zhou
,
K.
, and
Doyle
,
J. C.
,
1997
,
Essentials of Robust Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
22.
Sodano
,
H. A.
,
Bae
,
J.-S.
,
Inman
,
D. J.
, and
Belvin
,
W. K.
,
2005
, “
Concept and Model of Eddy Current Damper for Vibration Suppression of a Beam
,”
J. Sound Vib.
,
288
(
4–5
), pp.
1177
1196
.
23.
Dyke
,
S.
,
Spencer
,
B.
, Jr.
,
Sain
,
M.
, and
Carlson
,
J.
,
1998
, “
An Experimental Study of MR Dampers for Seismic Protection
,”
Smart Mater. Struct.
,
7
(
5
), p.
693
.
24.
Makris
,
N.
,
Burton
,
S. A.
,
Hill
,
D.
, and
Jordan
,
M.
,
1996
, “
Analysis and Design of ER Damper for Seismic Protection of Structures
,”
J. Eng. Mech.
,
122
(
10
), pp.
1003
1011
.
25.
Hagood
,
N. W.
, and
von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
,
146
(
2
), pp.
243
268
.
26.
Behrens
,
S.
,
Fleming
,
A. J.
, and
Moheimani
,
S. R.
,
2005
, “
Passive Vibration Control Via Electromagnetic Shunt Damping
,”
IEEE/ASME Trans. Mechatronics
,
10
(
1
), pp.
118
122
.
27.
Cheng
,
T.-H.
, and
Oh
,
I.-K.
,
2009
, “
Vibration Suppression of Flexible Beam Using Electromagnetic Shunt Damper
,”
IEEE Trans. Magn.
,
45
(
6
), pp.
2758
2761
.
28.
Cheng
,
T.-H.
, and
Oh
,
I.-K.
,
2009
, “
A Current-Flowing Electromagnetic Shunt Damper for Multi-Mode Vibration Control of Cantilever Beams
,”
Smart Mater. Struct.
,
18
(
9
), p.
095036
.
29.
Zuo
,
L.
, and
Cui
,
W.
,
2013
, “
Dual-Functional Energy-Harvesting and Vibration Control: Electromagnetic Resonant Shunt Series Tuned Mass Dampers
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051018
.
30.
Liu
,
Y.
,
Lin
,
C.-C.
,
Parker
,
J.
, and
Zuo
,
L.
,
2016
, “
Exact H2 Optimal Tuning and Experimental Verification of Energy-Harvesting Series Electromagnetic Tuned-Mass Dampers
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061003
.
31.
Inoue
,
T.
,
Ishida
,
Y.
, and
Sumi
,
M.
,
2008
, “
Vibration Suppression Using Electromagnetic Resonant Shunt Damper
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041003
.
32.
Zhu
,
S.
,
Shen
,
W.
, and
Qian
,
X.
,
2013
, “
Dynamic Analogy Between an Electromagnetic Shunt Damper and a Tuned Mass Damper
,”
Smart Mater. Struct.
,
22
(
11
), p.
115018
.
33.
Ikegame
,
T.
,
Takagi
,
K.
,
Inoue
,
T.
, and
Jikuya
,
I.
,
2017
, “
Sensorless Parameter Estimation of Electromagnetic Transducer Considering Eddy Currents
,”
Mechatronics
,
45
, pp.
130
142
.
34.
Tang
,
X.
,
Liu
,
Y.
,
Cui
,
W.
, and
Zuo
,
L.
,
2016
, “
Analytical Solutions to H2 and H∞ Optimizations of Resonant Shunted Electromagnetic Tuned Mass Damper and Vibration Energy Harvester
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011018
.
35.
Kim
,
J.
,
Ryu
,
Y.-H.
, and
Choi
,
S.-B.
,
2000
, “
New Shunting Parameter Tuning Method for Piezoelectric Damping Based on Measured Electrical Impedance
,”
Smart Mater. Struct.
,
9
(
6
), p.
868
.
36.
Park
,
C.-H.
,
2003
, “
Dynamics Modelling of Beams With Shunted Piezoelectric Elements
,”
J. Sound Vib.
,
268
(
1
), pp.
115
129
.
37.
Moheimani
,
S. O. R.
,
2003
, “
A Survey of Recent Innovations in Vibration Damping and Control Using Shunted Piezoelectric Transducers
,”
IEEE Trans. Control Syst. Technol.
,
11
(
4
), pp.
482
494
.
38.
Yan
,
B.
,
Wang
,
K.
,
Hu
,
Z.
,
Wu
,
C.
, and
Zhang
,
X.
,
2017
, “
Shunt Damping Vibration Control Technology: A Review
,”
Appl. Sci.
,
7
(
5
), p.
494
.
39.
Yamada
,
K.
,
Matsuhisa
,
H.
,
Utsuno
,
H.
, and
Sawada
,
K.
,
2010
, “
Optimum Tuning of Series and Parallel LR Circuits for Passive Vibration Suppression Using Piezoelectric Elements
,”
J. Sound Vib.
,
329
(
24
), pp.
5036
5057
.
40.
Yamada
,
K.
,
Matsuhisa
,
H.
, and
Utsuno
,
H.
,
2014
, “
Enhancement of Efficiency of Vibration Suppression Using Piezoelectric Elements and lr Circuit by Amplification of Electrical Resonance
,”
J. Sound Vib.
,
333
(
5
), pp.
1281
1301
.
41.
Soltani
,
P.
,
Kerschen
,
G.
,
Tondreau
,
G.
, and
Deraemaeker
,
A.
,
2014
, “
Piezoelectric Vibration Damping Using Resonant Shunt Circuits: An Exact Solution
,”
Smart Mater. Struct.
,
23
(
12
), p.
125014
.
42.
Caruso
,
G.
,
2001
, “
A Critical Analysis of Electric Shunt Circuits Employed in Piezoelectric Passive Vibration Damping
,”
Smart Mater. Struct.
,
10
(
5
), p.
1059
.
43.
Hagood
,
N. W.
,
Chung
,
W. H.
, and
Von Flotow
,
A.
,
1990
, “
Modelling of Piezoelectric Actuator Dynamics for Active Structural Control
,”
J. Intell. Mater. Syst. Struct.
,
1
(
3
), pp.
327
354
.
44.
Kozlowski
,
M. V.
,
Cole
,
D. G.
, and
Clark
,
R. L.
,
2011
, “
A Comprehensive Study of the RL Series Resonant Shunted Piezoelectric: A Feedback Controls Perspective
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011012
.
45.
Yamada
,
K.
,
Matsuhisa
,
H.
, and
Utsuno
,
H.
,
2007
, “
Equivalent Mechanical and Electrical Models of the Vibration Suppression System Using Piezoelectric Elements (in Japanese)
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
73
(
730
), pp.
1625
1632
.
46.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
2007
,
Table of Integrals, Series, and Products
, 7th ed.,
Academic Press
, New York.
You do not currently have access to this content.