This paper presents a distributed parameter model to study the effects of the harnessing cables on the dynamics of a host structure motivated by space structures applications. The structure is modeled using both Euler–Bernoulli and Timoshenko beam theories (TBT). The presented model studies the effects of coupling between various coordinates of vibrations due to the addition of the cable. The effects of the cable's offset position, pretension, and radius are studied on the natural frequencies of the system. Strain and kinetic energy expressions using linear displacement field assumptions and Green–Lagrange strain tensor are developed. The governing coupled partial differential equations for the cable-harnessed beam that includes the effects of the cable pretension are found using Hamilton's principle. The natural frequencies from the coupled Euler, Bernoulli, Timoshenko and decoupled analytical models are found and compared to the results of the finite element analysis (FEA).

References

1.
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Babuška
,
V.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Dynamic Modeling and Experimental Validation of a Cable-Loaded Panel
,”
J. Spacecr. Rockets
,
48
(
6
), pp.
958
974
.
2.
Babuska
,
V.
,
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2010
, “
Modeling and Experimental Validation of Space Structures With Wiring Harnesses
,”
J. Spacecr. Rockets
,
47
(
6
), pp.
1038
1052
.
3.
Goodding
,
J.
,
Babuska
,
V.
,
Griffith
,
D. T.
,
Ingram
,
B.
, and
Robertson
,
L.
,
2007
, “
Studies of Free-Free Beam Structural Dynamics Perturbations Due to Mounted Cable Harnesses
,”
AIAA
Paper No. 2007-2390.
4.
McClure
,
G.
, and
Lapointe
,
M.
,
2003
, “
Modeling the Structural Dynamic Response of Overhead Transmission Lines
,”
Comput. Struct.
,
81
(
8–11
), pp.
825
834
.
5.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2014
, “
Parameters for Modeling Stranded Cables as Structural Beams
,”
Exp. Mech.
,
54
(
9
), pp.
1613
1626
.
6.
Witz
,
J. A.
, and
Tan
,
Z.
,
1992
, “
On the Axial-Torsional Structural Behaviour of Flexible Pipes, Umbilicals and Marine Cables
,”
Mar. Struct.
,
5
(
2–3
), pp.
205
227
.
7.
Huang
,
S.
,
1999
, “
Stability Analysis of the Heave Motion of Marine Cable-Body Systems
,”
Ocean Eng.
,
26
(
6
), pp.
531
546
.
8.
Robertson
,
L.
,
Lane
,
S.
,
Ingram
,
B.
,
Hansen
,
E.
,
Babuska
,
V.
,
Goodding
,
J.
,
Mimovich
,
M.
,
Mehle
,
G.
,
Coombs
,
D.
, and
Ardelean
,
E.
,
2007
, “
Cable Effects on the Dynamics of Large Precision Structures
,”
AIAA
Paper No. 2007-2389.
9.
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Babuska
,
V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Experimental Techniques and Structural Parameter Estimation Studies of Spacecraft Cables
,”
J. Spacecr. Rockets
,
48
(
6
), pp.
942
957
.
10.
Ardelean
,
E.
,
Goodding
,
J.
,
Coombs
,
D.
,
Griffee
,
J.
,
Babuška
,
V.
,
Robertson
,
L.
, and
Lane
,
S.
,
2010
, “
Cable Effects Study: Tangents, Rat Holes, Dead Ends, and Valuable Results
,”
AIAA
Paper No. 2010-2806.
11.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2014
, “
Cable Parameters for Homogenous Cable-Beam Models for Space Structures
,” 32nd IMAC, A Conference and Exposition on Structural Dynamics, Orlando, FL, Feb. 3–6.
12.
Spak
,
K. S.
,
Agnes
,
G. S.
, and
Inman
,
D. J.
,
2014
, “
Bakeout Effects on Dynamic Response of Spaceflight Cables
,”
J. Spacecr. Rockets
,
51
(
5
), pp.
1721
1734
.
13.
Spak
,
K. S.
,
2014
, “
Modeling Cable Harness Effects on Spacecraft Structures
,”
Ph.D. dissertation
, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/49302
14.
Spak
,
K. S.
,
Agnes
,
G. S.
, and
Inman
,
D.
,
2013
, “
Towards Modeling of Cable-Harnessed Structures: Cable Damping Experiments
,”
AIAA
Paper No. 2013-1889.
15.
Choi
,
J.
, and
Inman
,
D. J.
,
2014
, “
Spectrally Formulated Modeling of a Cable-Harnessed Structure
,”
J. Sound Vib.
,
333
(
14
), pp.
3286
3304
.
16.
Huang
,
Y.-X.
,
Tian
,
H.
, and
Zhao
,
Y.
,
2016
, “
Effects of Cable on the Dynamics of a Cantilever Beam With Tip Mass
,”
Shock Vib.
,
2016
, p.
7698729
.
17.
Huang
,
Y.-X.
,
Tian
,
H.
, and
Zhao
,
Y.
,
2017
, “
Dynamic Analysis of Beam-Cable Coupled Systems Using Chebyshev Spectral Element Method
,”
Acta Mech. Sin.
,
33
(
5
), pp.
954
962
.
18.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Cable-Harnessed Space Structures: A Beam-Cable Approach
,”
24th International Association of Science and Technology for Development International Conference on Modelling and Simulation
, Banff, AB, Canada, July 17–19, pp.
280
284
.
19.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Dynamic Modelling of Cable-Harnessed Beam Structures With Periodic Wrapping Patterns: A Homogenization Approach
,”
Int. J. Modell. Simul.
,
33
(
4
), pp.
185
202
.https://www.tandfonline.com/doi/abs/10.2316/Journal.205.2013.4.205-5981
20.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Vibration Analysis of String-Harnessed Beam Structures: A Homogenization Approach
,”
AIAA
Paper No. 2013-1892.
21.
Martin
,
B.
, and
Salehian
,
A.
,
2014
, “
Vibration Modelling of String-Harnessed Beam Structures Using Homogenization Techniques
,”
ASME
Paper No. IMECE2014-37039.
22.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Homogenization Modeling of Periodically Wrapped String-Harnessed Beam Structures: Experimental Validation
,”
AIAA J.
,
54
(
12
), pp.
3965
3980
.
23.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Mass and Stiffness Effects of Harnessing Cables on Structural Dynamics: Continuum Modeling
,”
AIAA J.
,
54
(
9
), pp.
2881
2904
.
24.
Salehian
,
A.
,
Cliff
,
E. M.
, and
Inman
,
D. J.
,
2006
, “
Continuum Modeling of an Innovative Space-Based Radar Antenna Truss
,”
J. Aerosp. Eng.
,
19
(
4
), pp.
227
240
.
25.
Salehian
,
A.
,
Inman
,
D. J.
, and
Cliff
,
E. M.
,
2006
, “
Natural Frequency Validation of a Homogenized Model of a Truss
,”
XXIV-International Modal Analysis Conference
, St. Louis, MO, Jan. 30–Feb. 2.
26.
Salehian
,
A.
,
Seigler
,
T. M.
, and
Inman
,
D. J.
,
2007
, “
Dynamic Effects of a Radar Panel Mounted on a Truss Satellite
,”
AIAA J.
,
45
(
7
), pp.
1642
1654
.
27.
Salehian
,
A.
, and
Inman
,
D. J.
,
2008
, “
Dynamic Analysis of a Lattice Structure by Homogenization: Experimental Validation
,”
J. Sound Vib.
,
316
(
1–5
), pp.
180
197
.
28.
Salehian
,
A.
, and
Inman
,
D. J.
,
2010
, “
Micropolar Continuous Modeling and Frequency Response Validation of a Lattice Structure
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011010
.
29.
Salehian
,
A.
, and
Chen
,
Y.
,
2012
, “
On Strain-Rate Dependence of Kinetic Energy in Homogenization Approach: Theory and Experiment
,”
AIAA J.
,
50
(
10
), pp.
2029
2033
.
30.
Stoykov
,
S.
, and
Ribeiro
,
P.
,
2013
, “
Vibration Analysis of Rotating 3D Beams by the P-Version Finite Element Method
,”
Finite Elem. Anal. Des.
,
65
, pp.
76
88
.
31.
Stoykov
,
S.
, and
Margenov
,
S.
,
2014
, “
Nonlinear Vibrations of 3D Laminated Composite Beams
,”
Math. Probl. Eng.
,
2014
, p. 892782.
32.
Fonseca
,
J. R.
, and
Ribeiro
,
P.
,
2006
, “
Beam P-Version Finite Element for Geometrically Non-Linear Vibrations in Space
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
9–12
), pp.
905
924
.
33.
Stoykov
,
S.
, and
Ribeiro
,
P.
,
2010
, “
Nonlinear Forced Vibrations and Static Deformations of 3D Beams With Rectangular Cross Section: The Influence of Warping, Shear Deformation and Longitudinal Displacements
,”
Int. J. Mech. Sci.
,
52
(
11
), pp.
1505
1521
.
34.
Tanaka
,
M.
, and
Bercin
,
A. N.
,
1997
, “
Finite Element Modelling of the Coupled Bending and Torsional Free Vibration of Uniform Beams With an Arbitrary Cross-Section
,”
Appl. Math. Modell.
,
21
(
6
), pp.
339
344
.
35.
Song
,
O.
,
Ju
,
J.-S.
, and
Librescu
,
L.
,
1998
, “
Dynamic Response of Anisotropic Thin-Walled Beams to Blast and Harmonically Oscillating Loads
,”
Int. J. Impact Eng.
,
21
(
8
), pp.
663
682
.
36.
Stephen
,
N. G.
, and
Zhang
,
Y.
,
2006
, “
Coupled Tension–Torsion Vibration of Repetitive Beam-Like Structures
,”
J. Sound Vib.
,
293
(
1–2
), pp.
253
265
.
37.
Vörös
,
G. M.
,
2009
, “
On Coupled Bending–Torsional Vibrations of Beams With Initial Loads
,”
Mech. Res. Commun.
,
36
(
5
), pp.
603
611
.
You do not currently have access to this content.