The incoherent transport of ultrasound waves in water-saturated sintered glass bead packings is experimentally investigated. The spectral energy density of scattered high-frequency waves is explained by a diffusion wave equation. Immersion broadband transducers with central frequencies of 1 MHz are positioned at a distance of 73 mm to the porous sample. The diffusion coefficient and quality factor are predicted from a diffusion approximation of the time-dependent intensity curve to the ensemble-averaged measurement data. From the diffusion coefficient, we deduce a mean-free path for scattering events at l*=0.87±0.03 mm close to the range of particle diameters of the samples (1.0<dp<1.2 mm). Results are in good agreement with observations from Jia (2004, “Codalike Multiple Scattering of Elastic Waves in Dense Granular Media,” Phys. Rev. Lett., 93(15), p. 154303) observed for nonsintered and consolidated bead packings (0.6<dp<0.8 mm). The low-quality factor Q=190±10 indicates a high amount of intrinsic damping of the scattered waves although water was used as saturating and coupling fluid.

References

1.
Steeb
,
H.
,
2010
, “
Ultrasound Propagation in Cancellous Bone
,”
Arch. Appl. Mech.
,
80
(
5
), pp.
489
502
.
2.
Mouraille
,
O.
,
2009
, “
Sound Propagation in Dry Granular Materials: Discrete Element Simulations, Theory, and Experiments
,”
Ph.D. thesis
, University of Twente, Enschede, The Netherlands.https://research.utwente.nl/en/publications/sound-propagation-in-dry-granular-materials-discrete-element-simu
3.
Kurzeja
,
P. S.
,
2014
, “
Waves in Partially Saturated Porous Media: An Investigation on Multiple Scales
,”
Ph.D. thesis
, Ruhr–University Bochum, Bochum, Germany.http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/KurzejaPatrickSebastian/diss.pdf
4.
Laugier
,
P.
, and
Haiat
,
G.
,
2011
,
Bone Quantitative Ultrasound
,
Springer
,
Dordrecht, The Netherlands
.
5.
Kurzeja
,
P. S.
, and
Steeb
,
H.
,
2012
, “
About the Transition Frequency in Biot's Theory
,”
J. Acoust. Soc. Am.
,
131
(
6
), pp.
EL454
EL460
.
6.
Rempe
,
M.
,
Mitchell
,
T.
,
Renner
,
J.
,
Nippress
,
S.
,
Ben-Zion
,
Y.
, and
Rockwell
,
T.
,
2013
, “
Damage and Seismic Velocity Structure of Pulverized Rocks Near the San Andreas Fault
,”
J. Geophys. Res.
,
118
(
6
), pp.
2813
2831
.
7.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.
8.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
179
191
.
9.
Sheng
,
P.
,
1990
,
Scattering and Localization of Classical Waves in Random Media
(World Scientific Series on Directions in Condensed Matter Physics, Vol.
8
), World Scientific Publishing, Singapore.
10.
Le Gonidec
,
Y.
, and
Gibert
,
D.
,
2007
, “
Multiscale Analysis of Waves Reflected by Granular Media: Acoustic Experiments on Glass Beads and Effective Medium Theories
,”
J. Geophys. Res.
,
112
(
B5
), p. B05103.
11.
Jia
,
X.
,
2004
, “
Codalike Multiple Scattering of Elastic Waves in Dense Granular Media
,”
Phys. Rev. Lett.
,
93
(
15
), p.
154303
.
12.
Griffiths
,
S.
,
Rescaglio
,
A.
, and
Melo
,
F.
,
2010
, “
Ultrasound Propagation in Wet and Airless Non-Consolidated Granular Materials
,”
Ultrasonics
,
50
(
2
), pp.
139
144
.
13.
Güven
,
I.
,
2016
, “
Hydraulical and Acoustical Properties of Porous Sintered Glass Bead Systems: Experiments, Theory, and Simulations
,”
Ph.D. thesis
, University of Twente, Enschede, The Netherlands.https://research.utwente.nl/en/publications/hydraulical-and-acoustical-properties-of-porous-sintered-glass-be
14.
Gueven
,
I.
,
Frijters
,
S.
,
Harting
,
J.
,
Luding
,
S.
, and
Steeb
,
H.
,
2017
, “
Hydraulic Properties of Porous Sintered Glass Bead Systems
,”
Granular Matter
,
19
(
2
), p.
28
.
15.
Sheng
,
P.
,
2006
,
Introduction to Wave Scattering: Localization and Mesoscopic Phenomena
, Vol.
88
,
Springer-Verlag
,
Berlin
.
16.
Hennino
,
R.
,
Trégourès
,
N.
,
Shapiro
,
N.
,
Margerin
,
L.
,
Campillo
,
M.
,
Van Tiggelen
,
B.
, and
Weaver
,
R.
,
2001
, “
Observation of Equipartition of Seismic Waves
,”
Phys. Rev. Lett.
,
86
(
15
), p.
3447
.
17.
Jia
,
X.
,
Caroli
,
C.
, and
Velicky
,
B.
,
1999
, “
Ultrasound Propagation in Externally Stressed Granular Media
,”
Phys. Rev. Lett.
,
82
(
9
), p.
1863
.
18.
Brunet
,
T.
,
Jia
,
X.
, and
Mills
,
P.
,
2008
, “
Mechanisms for Acoustic Absorption in Dry and Weakly Wet Granular Media
,”
Phys. Rev. Lett.
,
101
(
13
), p.
138001
.
19.
Weaver
,
R. L.
, and
Sachse
,
W.
,
1995
, “
Diffusion of Ultrasound in a Glass Bead Slurry
,”
J. Acoust. Soc. Am.
,
97
(
4
), pp.
2094
2102
.
20.
Derode
,
A.
,
Tourin
,
A.
, and
Fink
,
M.
,
2001
, “
Random Multiple Scattering of Ultrasound. I. Coherent and Ballistic Waves
,”
Phys. Rev. E
,
64
(
3
), p.
036605
.
21.
Derode
,
A.
,
Tourin
,
A.
, and
Fink
,
M.
,
2001
, “
Random Multiple Scattering of Ultrasound. II. Is Time Reversal a Self-Averaging Process?
,”
Phys. Rev. E
,
64
(
3
), p.
036606
.
22.
Tournat
,
V.
, and
Gusev
,
V.
,
2009
, “
Nonlinear Effects for Coda-Type Elastic Waves in Stressed Granular Media
,”
Phys. Rev. E
,
80
(
1
), p.
011306
.
23.
Tournat
,
V.
,
Castagnède
,
B.
,
Gusev
,
V.
, and
Béquin
,
P.
,
2003
, “
Self-Demodulation Acoustic Signatures for Nonlinear Propagation in Glass Beads
,”
C. R. Mec.
,
331
(
2
), pp.
119
125
.
24.
Jia
,
X.
,
Brunet
,
T.
, and
Laurent
,
J.
,
2011
, “
Elastic Weakening of a Dense Granular Pack by Acoustic Fluidization: Slipping, Compaction, and Aging
,”
Phys. Rev. E
,
84
(
2
), p.
020301
.
25.
Ji
,
Q.
,
Le
,
L.
,
Filipow
,
L.
, and
Jackson
,
S.
,
1998
, “
Ultrasonic Wave Propagation in Water-Saturated Aluminum Foams
,”
Ultrasonics
,
36
(
6
), pp.
759
765
.
26.
Lawney
,
B.
, and
Luding
,
S.
,
2014
, “
Frequency Filtering in Disordered Granular Chains
,”
Acta Mech.
,
225
(
8
), pp.
2385
2407
.
27.
Legland
,
J.
,
Tournat
,
V.
,
Dazel
,
O.
,
Novak
,
A.
, and
Gusev
,
V.
,
2012
, “
Linear and Nonlinear Biot Waves in a Noncohesive Granular Medium Slab: Transfer Function, Self-Action, Second Harmonic Generation
,”
J. Acoust. Soc. Am.
,
131
(
6
), pp.
4292
4303
.
28.
Shrivastava
,
R. K.
, and
Luding
,
S.
,
2017
, “
Effect of Disorder on Bulk Sound Wave Speed: A Multiscale Spectral Analysis
,”
Nonlinear Processes Geophys.
,
24
(3), pp. 435–454.https://www.nonlin-processes-geophys.net/24/435/2017/npg-24-435-2017-discussion.html
29.
Page
,
J.
,
Schriemer
,
H.
,
Jones
,
I.
,
Sheng
,
P.
, and
Weitz
,
D.
,
1997
, “
Classical Wave Propagation in Strongly Scattering Media
,”
Physica A
,
241
(
1
), pp.
64
71
.
30.
Weaver
,
R.
,
1998
, “
Ultrasonics in an Aluminum Foam
,”
Ultrasonics
,
36
(
1–5
), pp.
435
442
.
31.
Page
,
J. H.
,
2011
, “
Ultrasonic Wave Transport in Strongly Scattering Media
,”
Nano Optics and Atomics:Transport of Light and Matter Waves
, D. S. Wiersma, R. Kaiser, and L. Fallani, eds., IOS Press, Amsterdam, The Netherlands, pp. 75–93.
32.
Cowan
,
M.
,
Jones
,
I.
,
Page
,
J.
, and
Weitz
,
D.
,
2002
, “
Diffusing Acoustic Wave Spectroscopy
,”
Phys. Rev. E
,
65
(
6
), p.
066605
.
33.
Becker
,
J.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
2003
, “
Characterization of Cement-Based Materials Using Diffuse Ultrasound
,”
J. Eng. Mech.
,
129
(
12
), pp.
1478
1484
.
34.
Jia
,
X.
,
Laurent
,
J.
,
Khidas
,
Y.
, and
Langlois
,
V.
,
2009
, “
Sound Scattering in Dense Granular Media
,”
Chin. Sci. Bull.
,
54
(
23
), pp.
4327
4336
.
35.
Deroo
,
F.
,
Kim
,
J.-Y.
,
Qu
,
J.
,
Sabra
,
K.
, and
Jacobs
,
L. J.
,
2010
, “
Detection of Damage in Concrete Using Diffuse Ultrasound
,”
J. Acoust. Soc. Am.
,
127
(
6
), pp.
3315
3318
.
36.
Weaver
,
R.
,
Zhang
,
Y.
,
Sachse
,
W.
, and
Green
,
K.
,
1991
, “
Diffusive Ultrasound Polycrystalline Solids
,”
Ultrasonics International 91
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
507
510
.
37.
Page
,
J. H.
,
Jones
, I
. P.
,
Schriemer
,
H. P.
,
Cowan
,
M. L.
,
Sheng
,
P.
, and
Weitz
,
D. A.
,
1999
, “
Diffusive Transport of Acoustic Waves in Strongly Scattering Media
,”
Physica B
,
263–264
, pp.
37
39
.
38.
Viard
,
N.
, and
Derode
,
A.
,
2012
, “
Experimental Determination of the Diffusion Constant for Ultrasonic Waves in 2-D Multiple Scattering Media With Focused Beamforming
,” Acoustics, Hong Kong, May 14–18, Paper No.
HAL-00810710
https://hal.archives-ouvertes.fr/hal-00810710/document.
39.
Page
,
J. H.
,
Schriemer
,
H. P.
,
Bailey
,
A. E.
, and
Weitz
,
D. A.
,
1995
, “
Experimental Test of the Diffusion Approximation for Multiply Scattered Sound
,”
Phys. Rev. E
,
52
(
3
), pp.
3106
3114
.
40.
Carslaw
,
H.
, and
Jaeger
,
J.
,
1986
,
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford, UK
.
41.
Job
,
S.
,
Strybulevych
,
A.
, and
Page
,
J. H.
,
2012
, “
Ultrasonic Wave Transport in Weakly Confined Granular Media in the Intermediate Frequency Regime
,” Acoustics, Hong Kong, May 14–18, Paper No.
HAL-00811269
https://hal.archives-ouvertes.fr/hal-00811269/document.
42.
Hu
,
H.
,
Strybulevych
,
A.
,
Page
,
J.
,
Skipetrov
,
S. E.
, and
van Tiggelen
,
B. A.
,
2008
, “
Localization of Ultrasound in a Three-Dimensional Elastic Network
,”
Nat. Phys.
,
4
(
12
), pp.
945
948
.
You do not currently have access to this content.