A theoretical method is employed to study the free vibration characteristics of a finite ring-stiffened elliptic cylindrical shell. Vibration equations of the elliptic cylindrical shell are derived based on Flügge shell theory, and the effects of the ring stiffeners are evaluated via “smeared” stiffener theory whereby the properties of the stiffeners are averaged over the shell surface. The displacements of the shell are expanded in double Fourier series in the axial and circumferential directions, and the circumferential curvature is expanded in single Fourier series in the circumferential direction. The partial differential characteristic equations with variable coefficients are converted into a set of linear equations with constant coefficients which couple with each other about the circumferential modal parameters. Then, the natural frequencies of the finite ring-stiffened cylindrical shell are obtained. To verify the accuracy of the present method, the finite ring-stiffened elliptic cylindrical shell is degenerated into two models: one of which is a ring-stiffened circular cylindrical shell and the other of which is an elliptic cylindrical shell without ring stiffeners. The present results of the two degenerated shells show good agreements with available results from the literature. The effects of main parameters, including the ellipticity, the shell length ratio, the stiffener's interval, the stiffener's depth, and the stiffener's eccentricity, on the free vibration of the ring-stiffened elliptic cylindrical shell are examined in detail. The ellipticity makes the difference between the symmetric and antisymmetric modal frequencies of the shell. The stiffeners have a greater influence on the free vibration at relatively higher order circumferential modal parameters. The circumferential modal parameters corresponding to the fundamental frequency are affected by the ellipticity, shell length, stiffeners' interval, and depth. The eccentricity of the ring stiffeners has a weak effect on the vibration of the structure.

References

1.
Qatu
,
M. S.
,
2002
, “
Recent Research Advances in the Dynamic Behavior of Shells: 1989–2000, Part 2: Homogeneous Shells
,”
ASME Appl. Mech. Rev.
,
55
(
5
), pp.
415
434
.
2.
Qatu
,
M. S.
,
2002
, “
Recent Research Advances in the Dynamic Behavior of Shells: 1989–2000, Part 1: Laminated Composite Shells
,”
ASME Appl. Mech. Rev.
,
55
(
4
), pp.
325
350
.
3.
Shi
,
P.
,
Kapania
,
R. K.
, and
Dong
,
C. Y.
,
2015
, “
Free Vibration of Curvilinearly Stiffened Shallow Shells
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031006
.
4.
Wah
,
T.
,
1966
, “
Flexural Vibrations of Ring-Stiffened Cylindrical Shells
,”
J. Sound Vib.
,
3
(
3
), pp.
242
251
.
5.
Basdekas
,
N. L.
, and
Chi
,
M.
,
1971
, “
Response of Oddly-Stiffened Circular Cylindrical Shells
,”
J. Sound Vib.
,
17
(
2
), pp.
187
206
.
6.
Mustafa
,
B. A. J.
, and
Ali
,
R.
,
1989
, “
An Energy Method for Free Vibration Analysis of Stiffened Circular Cylindrical Shells
,”
Comput. Struct.
,
32
(
2
), pp.
355
363
.
7.
Galaka
,
P. I.
,
Zarutskii
,
V. A.
,
Matsner
,
V. I.
, and
Nosachenko
,
A. M.
,
1974
, “
Free Vibrations of Ribbed Cylindrical Shells
,”
Int. Appl. Mech.
,
10
(
7
), pp.
726
731
.
8.
Zarutskii
,
V. A.
, and
Pochtman
,
Yu. M.
,
1979
, “
Influence of the Sign of Rib Eccentricity on the Optimal Natural-Frequency Vibrations of a Cylindrical Shell Design
,”
Int. Appl. Mech.
,
15
(
4
), pp.
336
337
.
9.
Liu
,
L.
,
Cao
,
D. G.
, and
Sun
,
S. P.
,
2013
, “
Vibration Analysis for Rotating Ring-Stiffened Cylindrical Shells With Arbitrary Boundary Conditions
,”
ASME J. Vib. Acoust.
,
135
(
6
), p.
061010
.
10.
Zarutskii
,
V. A.
, and
Podil'chuk
,
I. Y.
,
2010
, “
Influence of the Eccentricity of Ribs on the Natural Frequencies of Ribbed Cylindrical Shells
,”
Int. Appl. Mech.
,
46
(
2
), pp.
182
185
.
11.
Gan
,
L.
,
Li
,
X. B.
, and
Zhang
,
Z.
,
2009
, “
Free Vibration Analysis of Ring-Stiffened Cylindrical Shells Using Wave Propagation Approach
,”
J. Sound Vib.
,
326
(
3
), pp.
633
646
.
12.
Tennyson
,
R. C.
,
Booton
,
M.
, and
Caswell
,
R. D.
,
1971
, “
Buckling of Imperfect Elliptical Cylindrical Shells Under Axial Compression
,”
AIAA J.
,
9
(
2
), pp.
250
255
.
13.
Silvestre
,
N.
,
2008
, “
Buckling Behaviour of Elliptical Cylindrical Shells and Tubes Under Compression
,”
Int. J. Solids Struct.
,
45
(
16
), pp.
4427
4447
.
14.
Boyd
,
D. E.
, and
Culberson
,
L. D.
,
1971
, “
Free Vibrations of Freely Supported Oval Cylinders
,”
AIAA J.
,
9
(
8
), pp.
1474
1480
.
15.
Elsbernd
,
G. F.
, and
Leissa
,
A. W.
,
1973
, “
The Vibrations of Non-Circular Cylindrical Shells With Initial Stresses
,”
J. Sound Vib.
,
29
(
3
), pp.
309
329
.
16.
Armenakas
,
A. E.
, and
Koumousis
,
V. K.
,
1983
, “
Free Vibrations of Simply Supported Cylindrical Shells of Oval Crosssection
,”
AIAA J.
,
21
(
7
), pp.
1017
1027
.
17.
Sewall
,
J. L.
, and
Pusey
,
C. G.
,
1971
, “
Vibration Study of Clamped-Free Elliptical Shells
,”
AIAA J.
,
9
(
6
), pp.
1004
1011
.
18.
Sewall
,
J. L.
,
Thompson
,
W. M.
, Jr.
, and
Pusey
,
C. G.
,
1971
, “
An Experimental and Analytical Vibration Study of Elliptical Cylindrical Shells
,”
National Aeronautics and Space Administration
, Washington, DC, Report No.
NASA TND-6089
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710007375.pdf
19.
Hayek
,
S. I.
, and
Boisvert
,
J. E.
,
2010
, “
Vibration of Elliptic Cylindrical Shells: Higher Order Shell Theory
,”
J. Acoust. Soc. Am.
,
128
(
3
), pp.
1063
1072
.
20.
Bryan
,
A.
,
2017
, “
Free Vibration of Thin Shallow Elliptical Shells
,”
ASME J. Vib. Acoust.
(accepted).
21.
Willatzen
,
M.
, and
Voon
,
L. C. L. Y.
,
2006
, “
Flow-Acoustic Properties of Elliptic-Cylinder Waveguides and Enclosures
,”
J. Phys.: Conf. Ser.
,
52
(
1
), pp. 1–13.
22.
Li
,
T. Y.
,
Xiong
,
L.
,
Zhu
,
X.
,
Xiong
,
Y. P.
, and
Zhang
,
G. J.
,
2014
, “
The Prediction of the Elastic Critical Load of Submerged Elliptical Cylindrical Shell Based on the Vibro-Acoustic Model
,”
Thin-Walled Struct.
,
84
, pp.
255
262
.
23.
Bochkarev
,
S. A.
,
Lekomtsev
,
S. V.
, and
Matveenko
,
V. P.
,
2015
, “
Natural Vibrations of Loaded Noncircular Cylindrical Shells Containing a Quiescent Fluid
,”
Thin-Walled Struct.
,
90
, pp.
12
22
.
24.
Zhang
,
G. J.
,
Li
,
T. Y.
,
Zhu
,
X.
,
Yang
,
J.
, and
Miao
,
Y. Y.
,
2017
, “
Free and Forced Vibration Characteristics of Submerged Finite Elliptic Cylindrical Shell
,”
Ocean Eng.
,
129
, pp.
92
106
.
25.
Kempner
,
J.
,
Nissel
,
N.
, and
Vafakos
,
W. P.
,
1966
, “
Pressurized Oval Cylinders With Closely Spaced Rings
,”
AIAA J.
,
4
(
2
), pp.
338
345
.
26.
Boyd
,
D. E.
, and
Rao
,
C. K. P.
,
1973
, “
A Theoretical Analysis of the Free Vibrations of Ring- and/or Stringer-Stiffened Elliptical Cylinders With Arbitrary End Conditions, Volume 1: Analytical Derivation and Applications
,”
National Aeronautics and Space Administration
, Washington, DC, Report No.
NASA CR-2151
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730010200.pdf
27.
Volpe
,
V.
,
Chen
,
Y. N.
, and
Kempner
,
J.
,
1980
, “
Buckling of Orthogonally Stiffened Finite Oval Cylindrical Shells Under Axial Compression
,”
AIAA J.
,
18
(
5
), pp.
571
580
.
28.
Boiko
,
D. V.
,
Zheleznov
,
L. P.
, and
Kabanov
,
V. V.
,
2012
, “
Studies of Nonlinear Deformation and Stability of Stiffened Oval Cylindrical Shells Under Combined Loading by Bending Moment and Boundary Transverse Force
,”
Mech. Solids
,
47
(
3
), pp.
298
303
.
29.
Flügge
,
W.
,
1973
,
Stress in Shells
, 2nd ed.,
Springer
,
Berlin
.
30.
Rotter
,
J. M.
, and
Sadowski
,
A. J.
,
2012
, “
Cylindrical Shell Bending Theory for Orthotropic Shells Under General Axisymmetric Pressure Distributions
,”
Eng. Struct.
,
42
, pp.
258
265
.
31.
Romano
,
F.
, and
Kempner
,
J.
,
1962
, “
Stresses in Short Noncircular Cylindrical Shells Under Lateral Pressure
,”
ASME J. Appl. Mech.
,
29
(
4
), pp.
669
674
.
32.
Zhang
,
X. M.
,
Liu
,
G. R.
, and
Lam
,
K. Y.
,
2001
, “
Vibration Analysis of Thin Cylindrical Shells Using Wave Propagation Approach
,”
J. Sound Vib.
,
239
(
3
), pp.
397
403
.
33.
Zhu
,
X.
,
Ye
,
W. B.
,
Li
,
T. Y.
, and
Chen
,
C.
,
2013
, “
The Elastic Critical Pressure Prediction of Submerged Cylindrical Shell Using Wave Propagation Method
,”
Ocean Eng.
,
58
, pp.
22
26
.
34.
Bjorck
,
A.
,
2015
,
Numerical Methods in Matrix Computations
,
Springer International Publishing
, Berlin.
You do not currently have access to this content.