A bistable Duffing oscillator subjected to additive and multiplicative Ornstein–Uhlenbeck (OU) colored excitations is examined. It is modeled through a set of four first-order stochastic differential equations by representing the OU excitations as filtered Gaussian white noise excitations. Enlargement in the state-space vector leads to four-dimensional (4D) Fokker–Planck–Kolmogorov (FPK) equation. The exponential-polynomial closure (EPC) method, proposed previously for the case of white noise excitations, is further improved and developed to solve colored noise case, resulting in much more polynomial terms included in the approximate solution. Numerical results show that approximate solutions from the EPC method compare well with the predictions obtained via Monte Carlo simulation (MCS) method. Investigation is also carried out to examine the influence of intensity level on the probability distribution solutions of system responses.

References

1.
Qi
,
L.
, and
Cai
,
G. Q.
,
2013
, “
Dynamics of Nonlinear Ecosystems Under Colored Noise Disturbances
,”
Nonlinear Dyn.
,
73
(
1
), pp.
463
474
.
2.
Boore
,
D. M.
,
2003
, “
Simulation of Ground Motion Using the Stochastic Method
,”
Pure Appl. Geophys.
,
160
(
3
), pp.
635
676
.
3.
Kostić
,
S.
,
Vasović
,
N.
,
Perc
,
M.
, and
Toljić
,
M.
,
2013
, “
Stochastic Nature of Earthquake Ground Motion
,”
Phys. A: Stat. Mech. Appl.
,
392
(
18
), pp.
4134
4145
.
4.
Wang
,
L.
,
McCullough
,
M.
, and
Kareem
,
A.
,
2013
, “
A Data-Driven Approach for Simulation of Fullscale Downburst Wind Speeds
,”
J. Wind Eng. Ind. Aerodyn.
,
123
(
Pt. A
), pp.
171
190
.
5.
Francescutto
,
A.
, and
Naito
,
S.
,
2004
, “
Large Amplitude Rolling in a Realistic Sea
,”
Int. Shipbuild. Prog.
,
51
(
2–3
), pp.
221
235
.
6.
Athanassoulis
,
G. A.
,
Tsantili
,
I. C.
, and
Kapelonis
,
Z. G.
,
2015
, “
Beyond the Markovian Assumption: Response-Excitation Probabilistic Solution to Random Nonlinear Differential Equations in the Long Time
,”
Proc. R. Soc. London A
,
471
(
2183
), p.
20150501
.
7.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vib.
,
330
(
11
), pp.
2554
2564
.
8.
Rahman
,
M.
,
1996
, “
Stationary Solution for the Color-Driven Duffing Oscillator
,”
Phys. Rev. E
,
53
(
6
), pp.
6547
6550
.
9.
Floris
,
C.
,
2015
, “
Mean Square Stability of a Second-Order Parametric Linear System Excited by a Colored Gaussian Noise
,”
J. Sound Vib.
,
336
, pp.
82
95
.
10.
Patil
,
N. S.
, and
Sharma
,
S. N.
,
2014
, “
A Prediction Theory for a Coloured Noise-Driven Stochastic Differential System
,”
Syst. Sci. Control Eng.
,
2
(
1
), pp.
342
350
.
11.
Muscolino
,
G.
,
1995
, “
Linear Systems Excited by Polynomial Forms of Non-Gaussian Filtered Processes
,”
Probab. Eng. Mech.
,
10
(
1
), pp.
35
44
.
12.
Grigoriu
,
M.
, and
Waisman
,
F.
,
1997
, “
Linear Systems With Polynomials of Filtered Poisson Processes
,”
Probab. Eng. Mech.
,
12
(
2
), pp.
97
103
.
13.
Er
,
G. K.
,
2013
, “
The Probabilistic Solutions of Some Nonlinear Stretched Beams Excited by Filtered White Noise
,”
Procedia IUTAM
,
6
, pp.
141
150
.
14.
Kumar
,
P.
,
Narayanan
,
S.
, and
Gupta
,
S.
,
2014
, “
Finite Element Solution of Fokker-Planck Equation of Nonlinear Oscillators Subjected to Colored Non-Gaussian Noise
,”
Probab. Eng. Mech.
,
38
, pp.
143
155
.
15.
Koliopulos
,
P. K.
, and
Bishop
,
S. R.
,
1993
, “
Quasi-Harmonic Analysis of the Behavior of a Hardening Duffing Oscillator Subjected to Filtered White Noise
,”
Nonlinear Dyn.
,
4
, pp.
279
288
.
16.
Roy
,
R. V.
,
1994
, “
Stochastic Averaging of Oscillator Excited by Colored Gaussian Processes
,”
Int. J. Non-Linear Mech.
,
29
(
4
), pp.
463
475
.
17.
Xu
,
W.
,
Li
,
C.
,
Yue
,
X. L.
, and
Rong
,
H. W.
,
2014
, “
Stochastic Response of a Vibro-Impact System With Additive and Multiplicative Colored Noise Excitations
,”
Int. J. Dyn. Control
,
4
(
4
), pp.
393
399
.
18.
Er
,
G. K.
,
Guo
,
S. S.
, and
Iu
,
V. P.
,
2012
, “
Probabilistic Solutions of the Stochastic Oscillators With Even Nonlinearity in Displacement
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
054501
.
19.
Guo
,
S. S.
,
2014
, “
Probabilistic Solutions of Stochastic Oscillators Excited by Correlated External and Parametric White Noises
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031003
.
20.
Guo
,
S. S.
, and
Shi
,
Q. X.
,
2016
, “
Probabilistic Solutions of Nonlinear Oscillators to Random Colored Noise Excitations
,”
Acta Mech.
,
32
, p.
1
.
21.
Guo
,
S. S.
, and
Shi
,
Q. X.
,
2017
, “
Probabilistic Solutions of Nonlinear Oscillators Excited by Combined Colored and White Noise Excitations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
44
, pp.
414
423
.
22.
Fronzoni
,
L.
,
Grigolini
,
P.
,
Hanggi
,
P.
,
Moss
,
F.
,
Mannella
,
R.
, and
McClintock
,
P.
,
1986
, “
Bistable Oscillator Driven by Nonwhite Noise
,”
Phys. Rev. A
,
33
(
5
), pp.
3320
3327
.
You do not currently have access to this content.