To reduce the computational effort using polynomial chaos expansion to predict the dynamic characteristics of structures with several uncertain parameters, hybrid techniques combining stochastic finite element analysis with either deterministic or stochastic model order reduction (MOR) are developed. For the deterministic MOR, the Arnoldi-based Krylov subspace technique is implemented to reduce the system matrices of the finite element model. For the stochastic MOR, a stochastic reduced basis method is implemented in which the structural modal and frequency responses are approximated by a small number of basis vectors using stochastic Krylov subspace. To demonstrate the computational efficiency of each reduced stochastic finite element model, variability in the natural frequencies and frequency responses of a simply supported flexible plate randomized by uncertain geometrical and material parameters is examined. Results are compared with both Monte Carlo (MC) simulations and nonreduced stochastic models. Using the reduced models, the effects of the individual uncertain parameters as well as the combined uncertainties on the dynamic characteristics of the plate are examined.

References

1.
Fishman
,
G. S.
,
1995
,
MC: Concepts, Algorithms, and Applications
,
Springer
,
New York
.
2.
Zhou
,
K.
, and
Tang
,
J.
,
2015
, “
Reducing Dynamic Response Variation Using NURBS Finite Element-Based Geometry Perturbation
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
061008
.
3.
Chen
,
S. H.
,
Qiu
,
Z. P.
, and
Liu
,
Z. S.
,
1994
, “
A Method for Computing Eigenvalue Bounds in Structural Vibration Systems With Interval Parameters
,”
Comput. Struct.
,
51
(
3
), pp.
309
313
.
4.
Gao
,
W.
, and
Kessissoglou
,
N. J.
,
2007
, “
Dynamic Response Analysis of Stochastic Truss Structures Under Non-Stationary Random Excitation Using the Random Factor Method
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
2765
2773
.
5.
Weaver
,
R. L.
,
1996
, “
The Effect of an Undamped Finite Degree of Freedom ‘Fuzzy’ Substructure: Numerical Solutions and Theoretical Discussion
,”
J. Acoust. Soc. Am.
,
100
(
5
), pp.
3159
3164
.
6.
Soize
,
C.
,
1993
, “
A Model and Numerical Method in the Medium Frequency Range for Vibroacoustic Predictions Using the Theory of Structural Fuzzy
,”
J. Acoust. Soc. Am.
,
94
(
2
), pp.
849
865
.
7.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
8.
Soize
,
C.
,
2000
, “
A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics
,”
Probab. Eng. Mech.
,
15
(
3
), pp.
277
294
.
9.
Mehta
,
M. L.
,
1991
,
Random Matrices
,
Academic Press
,
New York
.
10.
Kessissoglou
,
N. J.
, and
Lucas
,
G. I.
,
2009
, “
Gaussian Orthogonal Ensemble Spacing Statistics and the Statistical Overlap Factor Applied to Dynamic Systems
,”
J. Sound Vib.
,
324
, pp.
1039
1066
.
11.
Cicirello
,
A.
, and
Langley
,
R. S.
,
2013
, “
The Vibro-Acoustic Analysis of Built-Up Systems Using a Hybrid Method With Parametric and Non-Parametric Uncertainties
,”
J. Sound Vib.
,
332
(
9
), pp.
2165
2178
.
12.
Langley
,
R. S.
, and
Cotoni
,
V.
,
2007
, “
Response Variance Prediction for Uncertain Vibro-Acoustic Systems Using a Hybrid Deterministic-Statistical Method
,”
J. Acoust. Soc. Am.
,
122
(
6
), pp.
3445
3463
.
13.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
14.
Sarsri
,
D.
,
Azrar
,
L.
,
Jebbouri
,
A.
, and
El Hami
,
A.
,
2011
, “
Component Mode Synthesis and Polynomial Chaos Expansions for Stochastic Frequency Functions of Large Linear FE Models
,”
Comput. Struct.
,
89
(
3–4
), pp.
346
356
.
15.
Rupert
,
C. P.
, and
Miller
,
C. T.
,
2007
, “
An Analysis of Polynomial Chaos Approximations for Modeling Single-Fluid-Phase Flow in Porous Medium Systems
,”
J. Comput. Phys.
,
226
(
2
), pp.
2175
2205
.
16.
Witteveen
,
J. A. S.
,
Sarkar
,
S.
, and
Bijl
,
H.
,
2007
, “
Modeling Physical Uncertainties in Dynamic Stall Induced Fluid–Structure Interaction of Turbine Blades Using Arbitrary Polynomial Chaos
,”
Comput. Struct.
,
85
, pp.
866
878
.
17.
Sepahvand
,
K.
,
Marburg
,
S.
, and
Hardtke
,
H. J.
,
2012
, “
Stochastic Free Vibration of Orthotropic Plates Using Generalized Polynomial Chaos Expansion
,”
J. Sound Vib.
,
331
(
1
), pp.
167
179
.
18.
Didier
,
J.
,
Sinou
,
J. J.
, and
Faverjon
,
B.
,
2013
, “
Nonlinear Vibrations of a Mechanical System With Non-Regular Nonlinearities and Uncertainties
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
11
), pp.
3250
3270
.
19.
Faverjon
,
B.
,
Ladevèze
,
P.
, and
Louf
,
F.
,
2009
, “
Validation of Stochastic Linear Structural Dynamics Models
,”
Comput. Struct.
,
87
(
13–14
), pp.
829
837
.
20.
Sinou
,
J. J.
, and
Faverjon
,
B.
,
2012
, “
The Vibration Signature of Chordal Cracks in a Rotor System Including Uncertainties
,”
J. Sound Vib.
,
331
(
1
), pp.
138
154
.
21.
Field
,
R. V.
, and
Grigoriu
,
M.
,
2004
, “
On the Accuracy of the Polynomial Chaos Approximation
,”
Probab. Eng. Mech.
,
19
(
1–2
), pp.
65
80
.
22.
Xiu
,
D. B.
, and
Hesthaven
,
J. S.
,
2005
, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
3
), pp.
1118
1139
.
23.
Stavroulakis
,
G.
,
Giovanis
,
D. G.
,
Papadrakakis
,
M.
, and
Papadopoulos
,
V.
,
2014
, “
A New Perspective on the Solution of Uncertainty Quantification and Reliability Analysis of Large-Scale Problems
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
627
658
.
24.
Doostan
,
A.
,
Ghanem
,
R. G.
, and
Red-Horse
,
J.
,
2007
, “
Stochastic Model Reduction for Chaos Representations
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
37–40
), pp.
3951
3966
.
25.
Arnst
,
M.
, and
Ghanem
,
R. G.
,
2008
, “
Probabilistic Equivalence and Stochastic Model Reduction in Multiscale Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
43–44
), pp.
3584
3592
.
26.
Puri
,
R. S.
, and
Morrey
,
D.
,
2011
, “
An Arnoldi Based Projection Formulation for Fully Coupled Low Frequency Structural-Acoustic Analysis
,”
Acta Acust. Acust.
,
97
(
3
), pp.
509
518
.
27.
Volkov
,
K. N.
,
2013
, “
Implementation and Comparison of Various Approaches to Solving Coupled Thermal Analysis Problems on Unstructured Meshes
,”
Comput. Math. Math. Phys.
,
53
(
4
), pp.
503
519
.
28.
Puri
,
R. S.
, and
Morrey
,
D.
,
2011
, “
A Krylov–Arnoldi Reduced Order Modelling Framework for Efficient, Fully Coupled, Structural-Acoustic Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
4
), pp.
495
517
.
29.
Bai
,
Z. J.
,
2002
, “
Krylov Subspace Techniques for Reduced-Order Modeling of Large-Scale Dynamical Systems
,”
Appl. Numer. Math.
,
43
(
1–2
), pp.
9
44
.
30.
Han
,
J. S.
,
Rudnyi
,
E. B.
, and
Korvink
,
J. G.
,
2005
, “
Efficient Optimization of Transient Dynamic Problems in MEMS Devices Using Model Order Reduction
,”
J. Micromech. Microeng.
,
15
(
4
), pp.
822
832
.
31.
Mi
,
N.
,
Tan
,
S. X. D.
,
Cai
,
Y. C.
, and
Hong
,
X. L.
,
2008
, “
Fast Variational Analysis of On-Chip Power Grids by Stochastic Extended Krylov Subspace Method
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
27
(
11
), pp.
1996
2006
.
32.
Nair
,
P. B.
, and
Keane
,
A. J.
,
2002
, “
Stochastic Reduced Basis Methods
,”
AIAA J.
,
40
(
8
), pp.
1653
1664
.
33.
Sachdeva
,
S. K.
,
Nair
,
P. B.
, and
Keane
,
A. J.
,
2006
, “
Hybridization of Stochastic Reduced Basis Methods With Polynomial Chaos Expansions
,”
Probab. Eng. Mech.
,
21
(
2
), pp.
182
192
.
34.
Sachdeva
,
S. K.
,
Nair
,
P. B.
, and
Keane
,
A. J.
,
2006
, “
Comparative Study of Projection Schemes for Stochastic Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
19–22
), pp.
2371
2392
.
35.
Dohnal
,
F.
,
Mace
,
B. R.
, and
Ferguson
,
N. S.
,
2009
, “
Joint Uncertainty Propagation in Linear Structural Dynamics Using Stochastic Reduced Basis Methods
,”
AIAA J.
,
47
(
4
), pp.
961
969
.
36.
Bah
,
M. T.
,
Nair
,
P. B.
,
Bhaskar
,
A.
, and
Keane
,
A. J.
,
2003
, “
Forced Response Statistics of Mistuned Bladed Disks: A Stochastic Reduced Basis Approach
,”
J. Sound Vib.
,
263
(
2
), pp.
377
397
.
37.
Mohan
,
P. S.
,
Nair
,
P. B.
, and
Keane
,
A. J.
,
2011
, “
Stochastic Projection Schemes for Deterministic Linear Elliptic Partial Differential Equations on Random Domains
,”
Int. J. Numer. Methods Eng.
,
85
(
7
), pp.
874
895
.
38.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
39.
Sepahvand
,
K.
,
Marburg
,
S.
, and
Hardtke
,
H. J.
,
2010
, “
Uncertainty Quantification in Stochastic Systems Using Polynomial Chaos Expansion
,”
Int. J. Appl. Mech.
,
2
(
2
), pp.
305
353
.
40.
Ghanem
,
R.
, and
Ghosh
,
D.
,
2007
, “
Efficient Characterization of the Random Eigenvalue Problem in a Polynomial Chaos Decomposition
,”
Int. J. Numer. Methods Eng.
,
72
(
4
), pp.
486
504
.
41.
Seguí
,
B.
,
Faverjon
,
B.
, and
Jacquet-Richardet
,
G.
,
2013
, “
Effects of Random Stiffness Variations in Multistage Rotors Using the Polynomial Chaos Expansion
,”
J. Sound Vib.
,
332
(
18
), pp.
4178
4192
.
42.
Debusschere
,
B. J.
,
Najm
,
H. N.
,
Pebay
,
P. P.
,
Knio
,
O. M.
,
Ghanem
,
R. G.
, and
Le Maitre
,
O. P.
,
2004
, “
Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
698
719
.
43.
Jacquelin
,
E.
,
Adhikari
,
S.
,
Sinou
,
J. J.
, and
Friswell
,
M. I.
,
2015
, “
Polynomial Chaos Expansion in Structural Dynamics: Accelerating the Convergence of the First Two Statistical Moment Sequences
,”
J. Sound Vib.
,
356
, pp.
144
154
.
You do not currently have access to this content.