An exact closed-form solution for the three-dimensional static deformation and free vibrational response of a simply supported and multilayered quasicrystal (QC) nanoplate with the nonlocal effect is derived. Numerical examples are presented for a homogeneous crystal nanoplate, homogenous QC nanoplate, and sandwich nanoplates with various stacking sequences. Induced by traction boundary conditions, extended displacements and stresses reveal the important role that the nonlocal parameter plays in the structural analysis of nanoquasicrystals (nano-QCs). The natural frequencies and the corresponding mode shapes of the nanoplates further show the influence of stacking sequence and phonon–phason coupling effect. This exact solution is useful for it provides benchmark results to assess the accuracy of finite element nano-QC models and can assist engineers in tuning their quasicrystal nanoplate design.

References

1.
Guo
,
D.
,
Xie
,
G.
, and
Lou
,
J.
,
2013
, “
Mechanical Properties of Nanoparticles: Basics and Applications
,”
J. Phys. D: Appl. Phys.
,
47
(
1
), p.
013001
.
2.
Eringen
,
A. C.
,
1972
, “
Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves
,”
Int. J. Eng. Sci.
,
10
(
5
), pp.
425
435
.
3.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2731
2743
.
4.
Lim
,
C. W.
,
Zhang
,
G.
, and
Reddy
,
J. N.
,
2015
, “
A Higher-Order Nonlocal Elasticity and Strain Gradient Theory and Its Applications in Wave Propagation
,”
J. Mech. Phys. Solids
,
78
, pp.
298
313
.
5.
Arash
,
B.
, and
Wang
,
Q.
,
2012
, “
A Review on the Application of Nonlocal Elastic Models in Modelling of Carbon Nanotubes and Graphenes
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
303
313
.
6.
Di Paola
,
M.
,
Failla
,
G.
,
Pirrotta
,
A.
,
Sofi
,
A.
, and
Zingales
,
M.
,
2013
, “
The Mechanically Based Non-Local Elasticity: An Overview of Main Results and Future Challenges
,”
Philos. Trans. R. Soc., A
,
371
(
1993
), pp.
1
16
.
7.
Eringen
,
A. C.
,
1984
, “
Theory of Nonlocal Piezoelectricity
,”
J. Math. Phys.
,
25
(
3
), pp.
717
727
.
8.
Eringen
,
A. C.
,
1973
, “
Theory of Nonlocal Electromagnetic Elastic Solids
,”
J. Math. Phys.
,
14
(
6
), pp.
733
740
.
9.
Alaimo
,
A.
,
Bruno
,
M.
,
Milazzo
,
A.
, and
Orlando
,
C.
,
2013
, “
Nonlocal Model for a Magneto-Electro-Elastic Nanoplate
,”
AIP Conference Proceedings
, Rhodes, Greece, Sept. 21–27, Vol.
1558
, pp.
1208
1211
.
10.
Nan
,
C. W.
,
Bichurin
,
M. I.
,
Dong
,
S. X.
,
Viehland
,
D.
, and
Srinivasan
,
G.
,
2008
, “
Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions
,”
J. Appl. Phys.
,
103
(
3
), p.
031101
.
11.
Louzguine-Luzgin
,
D. V.
, and
Inoue
,
A.
,
2008
, “
Formation and Properties of Quasicrystals
,”
Annu. Rev. Mater. Res.
,
38
(
1
), pp.
403
423
.
12.
Trebin
,
H. R.
,
2003
,
Quasicrystals: Structure and Physical Properties
,
Wiley-VCH Verlag GmbH and Co. KGaA
,
Weinheim, Germany
.
13.
Fan
,
T. Y.
,
2011
,
The Mathematical Theory of Elasticity of Quasicrystals and Its Applications
,
Springer, Heidelberg
,
Germany
.
14.
Shechtman
,
D.
,
Blech
,
I.
,
Gratias
,
D.
, and
Cahn
,
J. W.
,
1984
, “
Metallic Phase With Long-Range Orientational Order and no Translational Symmetry
,”
Phys. Rev. Lett.
,
53
(
20
), pp.
1951
1953
.
15.
Bindi
,
L.
,
Steinhardt
,
P. J.
,
Yao
,
N.
, and
Lu
,
P. J.
,
2009
, “
Natural Quasicrystals
,”
Science
,
324
(
5932
), pp.
1306
1309
.
16.
Inoue
,
A.
, and
Takeuchi
,
A.
,
2004
, “
Recent Progress in Bulk Glassy, Nanoquasicrystalline and Nanocrystalline Alloys
,”
Mater. Sci. Eng. A
,
375–377
(
1–2
), pp.
16
30
.
17.
Fournee
,
V.
,
Sharma
,
H. R.
,
Shimoda
,
M.
,
Tsai
,
A. P.
,
Unal
,
B.
,
Ross
,
A. R.
,
Lograsso
,
T. A.
, and
Thiel
,
P. A.
,
2005
, “
Quantum Size Effects in Metal Thin Films Grown on Quasicrystalline Substrates
,”
Phys. Rev. Lett.
,
95
(
15
), p.
155504
.
18.
Lefaix
,
H.
,
Prima
,
F.
,
Zanna
,
S.
,
Vermaut
,
P.
,
Dubot
,
P.
,
Marcus
,
P.
,
Janickovic
,
D.
, and
Svec
,
P.
,
2007
, “
Surface Properties of a Nano-Quasicrystalline Forming Ti Based System
,”
Mater. Trans.
,
48
(
3
), pp.
278
286
.
19.
Zhang
,
J.
,
Pei
,
L.
,
Du
,
H.
,
Liang
,
W.
,
Xu
,
C.
, and
Lu
,
B.
,
2008
, “
Effect of Mg-Based Spherical Quasicrystals on Microstructure and Mechanical Properties of AZ91 Alloys
,”
J. Alloys Compd.
,
453
(
1–2
), pp.
309
315
.
20.
Wang
,
Z.
,
Zhao
,
W.
,
Qin
,
C.
,
Cui
,
Y.
,
Fan
,
S.
, and
Jia
,
J.
,
2012
, “
Direct Preparation of Nano-Quasicrystals Via a Water-Cooled Wedge-Shaped Copper Mould
,”
J. Nanomater.
,
2012
, p.
708240
.
21.
Inouea
,
A.
,
Kongb
,
F.
,
Zhua
,
S.
,
Liud
,
C. T.
, and
Al-Marzoukic
,
F.
,
2015
, “
Development and Applications of Highly Functional Al-Based Materials by Use of Metastable Phases
,”
Mater. Res.
,
18
(
6
), pp.
1414
1425
.
22.
Wang
,
Y. Z.
,
Li
,
F. M.
, and
Kishimoto
,
K.
,
2012
, “
Effects of Axial Load and Elastic Matrix on Flexural Wave Propagation in Nanotube With Nonlocal Timoshenko Beam Model
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031011
.
23.
Lu
,
P.
,
Zhang
,
P. Q.
,
Lee
,
H. P.
,
Wang
,
C. M.
, and
Reddy
,
J. N.
,
2007
, “
Non-Local Elastic Plate Theories
,”
Proc. R. Soc. A
,
463
(
2088
), pp.
3225
3240
.
24.
Wang
,
Q.
, and
Varadan
, V
. K.
,
2007
, “
Application of Nonlocal Elastic Shell Theory in Wave Propagation Analysis of Carbon nanotubes
,”
Smart Mater. Struct.
,
16
(
1
), pp.
178
190
.
25.
Waksmanski
,
N.
,
Pan
,
E.
,
Yang
,
L. Z.
, and
Gao
,
Y.
,
2014
, “
Free Vibration of a Multilayered One-Dimensional Quasi-Crystal Plate
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
041019
.
26.
Pagano
,
N. J.
,
1970
, “
Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates
,”
J. Compos. Mater.
,
4
(1), pp.
20
34
.
27.
Pan
,
E.
,
2001
, “
Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates
,”
ASME J. Appl. Mech.
,
68
(
4
), pp.
608
618
.
28.
Pan
,
E.
, and
Heyliger
,
P. R.
,
2002
, “
Free Vibrations of Simply Supported and Multilayered Magneto-Electro-Elastic Plates
,”
J. Sound Vib.
,
252
(
3
), pp.
429
442
.
29.
Ding
,
D. H.
,
Yang
,
W. G.
,
Hu
,
C. Z.
, and
Wang
,
R. H.
,
1993
, “
Generalized Elasticity Theory of Quasicrystals
,”
Phys. Rev. B
,
48
(
10
), pp.
7003
7010
.
30.
Bak
,
P.
,
1985
, “
Symmetry, Stability and Elastic Properties of Icosahedral Incommensurate Crystals
,”
Phys. Rev. B
,
32
(
9
), pp.
5764
5772
.
31.
Yang
,
L. Z.
,
Gao
,
Y.
,
Pan
,
E.
, and
Waksmanski
,
N.
,
2015
, “
An Exact Closed-Form Solution for a Multilayered One-Dimensional Orthorhombic Quasicrystal Plate
,”
Acta Mech.
,
226
(
11
), pp.
3611
3621
.
32.
Narendar
,
S.
, and
Gopalakrishnan
,
S.
,
2009
, “
Nonlocal Scale Effects on Wave Propagation in Multi-Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
,
47
(
2
), pp.
526
538
.
33.
Pan
,
E.
, and
Waksmanski
,
N.
,
2016
, “
Deformation of a Layered Magnetoelectroelastic Plate With Nonlocal Effect, an Analytical Three-Dimensional Solution
,”
Smart Mater. Struct.
,
25
(
9
), p.
095013
.
34.
Fan
,
T. Y.
,
Xie
,
L. Y.
,
Fan
,
L.
, and
Wang
,
Q. Z.
,
2011
, “
Interface of Quasicrystals and Crystal
,”
Chin. Phys. B
,
20
(
7
), p.
076102
.
You do not currently have access to this content.