Determining the dynamic response of submerged and confined disklike structures is of interest in engineering applications, such as in hydraulic turbine runners. This dynamic response is heavily affected by the added mass and damping as well as the proximity of solid boundaries. These solid boundaries are normally considered as completely rigid in theoretical or numerical calculations, however, this assumption is not always valid. Some hydraulic turbines have noncompletely stiff casings, which can modify the dynamic response of the runner itself, affecting specially its natural frequencies and damping behavior. To determine the influence of noncompletely rigid nearby surfaces in the dynamic behavior of a submerged structure, an experimental test rig has been constructed. This test rig is based on a disk attached to a shaft and confined in a tank covered with two different casings with different mass and stiffness. For both covers and different disk to cover distances, natural frequencies and damping ratios of the disk have been obtained experimentally. Accelerometers installed on the disk and covers as well as pressure sensors are used for this purpose. Results obtained for all the cases are discussed in detail and compared with a simplified theoretical model.

References

1.
Kwak
,
M. K.
, and
Kim
,
K. C.
,
1991
, “
Axisymmetric Vibration of Circular Plates in Contact With Fluid
,”
J. Sound Vib.
,
146
(
3
), pp.
381
389
.
2.
Ginsberg
,
J. H.
, and
Chu
,
P.
,
1992
, “
Asymmetric Vibration of a Heavily Fluid‐Loaded Circular Plate Using Variational Principles
,”
J. Acoust. Soc. Am.
,
91
(
2
), pp.
894
906
.
3.
Amabili
,
M.
, and
Kwak
,
M. K.
,
1996
, “
Free Vibrations of Circular Plates Coupled With Liquids: Revising the Lamb Problem
,”
J. Fluids Struct.
,
10
(
7
), pp.
743
761
.
4.
Amabili
,
M.
,
Frosali
,
G.
, and
Kwak
,
M. K.
,
1996
, “
Free Vibrations of Annular Plates Coupled With Fluids
,”
J. Sound Vib.
,
191
(
5
), pp.
825
846
.
5.
Amabili
,
M.
, and
Dalpiaz
,
G.
,
1998
, “
Vibrations of Base Plates in Annular Cylindrical Tanks: Theory and Experiments
,”
J. Sound Vib.
,
210
(
3
), pp.
329
350
.
6.
Kwak
,
M. K.
, and
Amabili
,
M.
,
1999
, “
Hydroelastic Vibration of Free-Edge Annular Plates
,”
ASME J. Vib. Acoust.
,
121
(
1
), pp.
26
32
.
7.
Amabili
,
M.
,
1996
, “
Effect of Finite Fluid Depth on the Hydroelastic Vibrations of Circular and Annular Plates
,”
J. Sound Vib.
,
193
(
4
), pp.
909
925
.
8.
Jeong
,
K.-H.
,
Lee
,
G.-M.
, and
Kim
,
T.-W.
,
2009
, “
Free Vibration Analysis of a Circular Plate Partially in Contact With a Liquid
,”
J. Sound Vib.
,
324
(
1–2
), pp.
194
208
.
9.
Amabili
,
M.
, and
Kwak
,
M. K.
,
1999
, “
Vibration of Circular Plates on a Free Fluid Surface: Effect of Surface Waves
,”
J. Sound Vib.
,
226
(
3
), pp.
407
424
.
10.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
, and
Valero
,
C.
,
2014
, “
Experimental Study on the Added Mass and Damping of a Disk Submerged in a Partially Fluid-Filled Tank With Small Radial Confinement
,”
J. Fluids Struct.
,
50
, pp.
1
17
.
11.
Kubota
,
Y.
, and
Suzuki
,
T.
,
1984
, “
Added Mass Effect on Disc Vibrating in Fluid
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
,
50
(
449
), pp.
243
248
.
12.
Kubota
,
Y.
, and
Ohashi
,
H.
,
1991
, “
A Study of the Natural Frequencies of Hydraulic Pumps
,”
1st JSME/ASME Joint International Conference on Nuclear Engineering
, Tokio, Japan, Nov. 4–7, pp.
589
593
.
13.
Askari
,
E.
,
Jeong
,
K.-H.
, and
Amabili
,
M.
,
2013
, “
Hydroelastic Vibration of Circular Plates Immersed in a Liquid-Filled Container With Free Surface
,”
J. Sound Vib.
,
332
(
12
), pp.
3064
3085
.
14.
Presas
,
A.
,
Valentin
,
D.
,
Egusquiza
,
E.
,
Valero
,
C.
, and
Seidel
,
U.
,
2015
, “
Influence of the Rotation on the Natural Frequencies of a Submerged-Confined Disk in Water
,”
J. Sound Vib.
,
337
, pp.
161
180
.
15.
Naik
,
T.
,
Longmire
,
E. K.
, and
Mantell
,
S. C.
,
2003
, “
Dynamic Response of a Cantilever in Liquid Near a Solid Wall
,”
Sens. Actuators
, A,
102
(
3
), pp.
240
254
.
16.
Vu
,
V.
,
Thomas
,
M.
,
Lakis
,
A.
, and
Marcouiller
,
L.
,
2007
, “
Effect of Added Mass on Submerged Vibrated Plates
,”
25th Seminar on Machinery Vibration, Canadian
Machinery Vibration Association
, Saint John, NB, pp.
NB40.1
40.15
.
17.
Askari
,
E.
, and
Daneshmand
,
F.
,
2010
, “
Free Vibration of an Elastic Bottom Plate of a Partially Fluid-Filled Cylindrical Container With an Internal Body
,”
Eur. J. Mech., A: Solids
,
29
(
1
), pp.
68
80
.
18.
Shafiee
,
A. A.
,
Daneshmand
,
F.
,
Askari
,
E.
, and
Mahzoon
,
M.
,
2014
, “
Dynamic Behavior of a Functionally Graded Plate Resting on Winkler Elastic Foundation and in Contact With Fluid
,”
Struct. Eng. Mech.
,
50
(
1
), pp.
53
71
.
19.
Hasheminejad
,
S. M.
,
Khaani
,
H. A.
, and
Shakeri
,
R.
,
2013
, “
Free Vibration and Dynamic Response of a Fluid-Coupled Double Elliptical Plate System Using Mathieu Functions
,”
Int. J. Mech. Sci.
,
75
(
0
), pp.
66
79
.
20.
Hengstler
,
J. A. N.
,
2013
, “
Influence of the Fluid-Structure Interaction on the Vibrations of Structures
,”
Ph.D. thesis
, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
21.
Jeong
,
K.-H.
,
2003
, “
Free Vibration of Two Identical Circular Plates Coupled With Bounded Fluid
,”
J. Sound Vib.
,
260
(
4
), pp.
653
670
.
22.
Jacquet-Richardet
,
G.
, and
Dal-Ferro
,
C.
,
1996
, “
Reduction Method for Finite Element Dynamic Analysis of Submerged Turbomachinery Wheels
,”
Comput. Struct.
,
61
(
6
), pp.
1025
1036
.
23.
Lais
,
S.
,
Liang
,
Q.
,
Henggeler
,
U.
,
Weiss
,
T.
,
Escaler
,
X.
, and
Egusquiza
,
E.
,
2009
, “
Dynamic Analysis of Francis Runners—Experiment and Numerical Simulation
,”
Int. J. Fluid Mach. Syst.
,
2
(
4
), pp.
303
314
.
24.
Hübner
,
B.
,
Seidel
,
U.
, and
Roth
,
S.
,
2010
, “
Application of Fluid-Structure Coupling to Predict the Dynamic Behavior of Turbine Components
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), p.
012009
.
25.
Blevins
,
R. D.
,
2001
,
Formulas for Natural Frequency and Mode Shape
,
Krieger Publishing Company
,
Malabar, FL
.
26.
Sigrist
,
J.-F.
,
Broc
,
D.
, and
Lainé
,
C.
,
2006
, “
Dynamic Analysis of a Nuclear Reactor With Fluid–Structure Interaction: Part I: Seismic Loading, Fluid Added Mass and Added Stiffness Effects
,”
Nucl. Eng. Des.
,
236
(
23
), pp.
2431
2443
.
27.
Lu
,
L.
,
Yang
,
Y.
,
Li
,
P.
, and
Zhang
,
M.
,
2011
, “
Added Mass, Added Stiffness and Added Damping Coefficients for a Parallel Plate-Type Structure
,”
Appl. Mech. Mater.
,
66–68
, pp.
1738
1742
.
28.
Binda
,
M.
,
Harčarik
,
T.
, and
Šimčák
,
F.
,
2011
, “
Modal Parameters Estimation by Using PULSE Reflex Modal Analysis
,”
4th International Conference of Modelling of Mechanical and Mechatronic Systems
(MMaMS), Herl'any, Slovakia, Sept. 20–22, pp.
17
21
.
29.
Rodriguez
,
C. G.
,
Flores
,
P.
,
Pierart
,
F. G.
,
Contzen
,
L. R.
, and
Egusquiza
,
E.
,
2012
, “
Capability of Structural–Acoustical FSI Numerical Model to Predict Natural Frequencies of Submerged Structures With Nearby Rigid Surfaces
,”
Comput. Fluids
,
64
, pp.
117
126
.
30.
Monette
,
C.
,
Nennemann
,
B.
,
Seeley
,
C.
,
Coutu
,
A.
, and
Marmont
,
H.
,
2014
, “
Hydro-Dynamic Damping Theory in Flowing Water
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032044
.
You do not currently have access to this content.