Multilayered elastic structures are widely used in engineering applications. In this paper, a spectral finite element model (SFEM) is developed to predict the dynamic behavior of a multilayered beam structure. First, a higher-order multilayered beam model is derived. Each layer is modeled as a Timoshenko beam, in which both shear deformation and rotational inertia are considered. By allowing different rotation in each layer, the overall sectional warping effect is included as well. A set of fully coupled governing equations presented in a compact form and associated boundary conditions are obtained by the application of Hamilton's principle. Second, a semi-analytical solution of these equations is determined and used in formulating the SFEM. The SFEM predictions are validated against the nastran results and other results in literature. Compared to the conventional FEM (CFEM), a very small number of elements are required in the SFEM for comparable accuracy, which substantially reduce the computing time, especially for simulations of high-frequency wave propagations. Finally, the SFEM is used to predict the lamb wave responses in multilayered beams. Wave propagation characteristics in both undamaged and damaged cases are well captured. In summary, the SFEM can accurately and efficiently predict the behavior of multilayered beams and serve as a framework to conduct wave propagation prediction and damage diagnostic analysis in structural health monitoring (SHM) applications.

References

1.
Reddy
,
J. N.
,
2003
,
Mechanics of Laminated Composite Plates and Shells
,
CRC Press
,
Boca Raton
.
2.
Krajcinovic
,
D.
,
1972
, “
Sandwich Beam Analysis
,”
ASME J. Appl. Mech.
,
39
(
3
), pp.
773
778
.
3.
Zuo
,
Q. H.
, and
Hjelmstad
,
K. D.
,
1998
, “
Piecewise Linear Warping Theory for Multilayered Elastic Beams
,”
J. Eng. Mech.
,
124
(
4
), pp.
377
384
.
4.
Banerjee
,
J. R.
,
2003
, “
Free Vibration of Sandwich Beams Using the Dynamic Stiffness Method
,”
Comput. Struct.
,
81
(
18
), pp.
1915
1922
.
5.
Banerjee
,
J. R.
, and
Sobey
,
A. J.
,
2005
, “
Dynamic Stiffness Formulation and Free Vibration Analysis of a Three-Layered Sandwich Beam
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2181
2197
.
6.
Banerjee
,
J. R.
,
Cheung
,
C. W.
,
Morishima
,
R.
,
Perera
,
M.
, and
Njuguna
,
J.
,
2007
, “
Free Vibration of a Three-Layered Sandwich Beam Using the Dynamic Stiffness Method and Experiment
,”
Int. J. Solids Struct.
,
44
(
22–23
), pp.
7543
7563
.
7.
Atlihan
,
G.
,
Callioglu
,
H.
,
Conkur
,
E. S.
, and
Topcu
,
M.
,
2009
, “
Free Vibration Analysis of the Laminated Composite Beams by Using DQM
,”
J. Reinf. Plast. Compos.
,
28
(
7
), pp.
881
892
.
8.
Lee
,
U.
,
2008
,
Spectral Element Method in Structural Dynamics
,
Wiley
,
Singapore
.
9.
Moser
,
F.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
1999
, “
Modeling Elastic Wave Propagation in Waveguides With The Finite Element Method
,”
NDT&E Int.
,
32
(
4
), pp.
225
234
.
10.
Yang
,
C.
,
Ye
,
L.
,
Su
,
Z.
, and
Bannister
,
M.
,
2006
, “
Some Aspects of Numerical Simulation for Lamb Wave Propagation in Composite Laminates
,”
Compos. Struct.
,
75
(
1–4
), pp.
267
275
.
11.
Kocaturk
,
T.
,
Eskin
,
A.
, and
Akbas
,
S. D.
,
2011
, “
Wave Propagation in Piecewise Homogeneous Cantilever Beam Under Impact Force
,”
Int. J. Phys. Sci.
,
6
(
16
), pp.
3867
3874
.
12.
Beskos
,
D.
, and
Narayanan
,
G.
,
1983
, “
Dynamic Response of Frameworks by Numerical Laplace Transform
,”
Comput. Methods Appl. Mech. Eng.
,
37
(
3
), pp.
289
307
.
13.
Doyle
,
J. F.
,
1997
,
Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms
, 2nd ed.,
Springer-Verlag
,
New York
.
14.
Leung
,
A. Y. T.
,
1993
,
Dynamic Stiffness and Substructures
,
Springer-Verlag
,
London
.
15.
Gopalakrishnan
,
S.
,
Chakraborty
,
A.
, and
Mahapatra
,
D. R.
,
2008
,
Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures
,
Springe-Verlag
,
London
.
16.
Doyle
,
J. F.
,
1988
, “
A Spectrally Formulated Finite Element for Longitudinal Wave Propagation
,”
Int. J. Anal. Exp. Modal Anal.
,
3
, pp.
1
5
.
17.
Doyle
,
J. F.
, and
Farris
,
T. N.
,
1990
, “
A Spectrally Formulated Finite Element for Flexural Wave Propagation in Beams
,”
Int. J. Anal. Exp. Modal Anal.
,
5
, pp.
13
23
.
18.
Gopalakrishnan
,
S.
,
Martin
,
M.
, and
Doyle
,
J. F.
,
1992
, “
A Matrix Methodology for Spectral Analysis of Wave Propagation in Multiple Connected Timoshenko Beams
,”
J. Sound Vib.
,
158
(
1
), pp.
11
24
.
19.
Martin
,
F.
,
Gopalakrishnan
,
S.
, and
Doyle
,
J. F.
,
1994
, “
Wave Propagation in Multiply Connected Deep Waveguides
,”
J. Sound Vib.
,
174
(
4
), pp.
521
538
.
20.
Wang
,
G.
, and
Wereley
,
N. M.
,
2004
, “
Free Vibration Analysis of Rotating Blades With Uniform Tapers
,”
AIAA J.
,
42
(
12
), pp.
2429
2437
.
21.
Mahapatra
,
D. R.
,
Gopalakrishnan
,
S.
, and
Sankar
,
T. S.
,
2000
, “
Spectral-Element-Based Solution For Wave Propagation Analysis of Multiply Connected Unsymmetric Laminated Composite Beams
,”
J. Sound Vib.
,
237
(
5
), pp.
819
836
.
22.
Mahapatra
,
D. R.
, and
Gopalakrishnan
,
S.
,
2003
, “
A Spectral Finite Element Model for Analysis of Axial-Flexural-Shear Coupled Wave Propagation in Laminated Composite Beams
,”
Compos. Struct.
,
59
(
1
), pp.
67
88
.
23.
Ruotolo
,
R.
,
2004
, “
A Spectral Element for Laminated Composite Beams: Theory and Application to Pyroshock Analysis
,”
J. Sound Vib.
,
270
(
1–2
), pp.
149
169
.
24.
Palacz
,
M.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2005
, “
The Spectral Finite Element Model for Analysis of Flexural-Shear Coupled Wave Propagation: Part 1: Laminated Multilayer Composite beam
,”
Compos. Struct.
,
68
(
1
), pp.
37
44
.
25.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2006
, “
Wavelet Based Spectral Finite Element for Analysis of Coupled Wave Propagation in Higher Order Composite Beams
,”
Compos. Struct.
,
73
(
3
), pp.
263
277
.
26.
Peng
,
H.
,
Ye
,
L.
,
Meng
,
G.
,
Mustapha
,
S.
, and
Li
,
F.
,
2010
, “
Concise Analysis of Wave Propagation Using the Spectral Element Method and Identification of Delamination in CF/EP Composite Beams
,”
Smart Mater. Struct.
,
19
(
8
), pp.
1
11
.
27.
Lee
,
U.
, and
Jang
,
I.
,
2010
, “
Spectral Element Model for Axially Loaded Bending-Shear-Torsion Coupled Composite Timoshenko Beams
,”
Compos. Struct.
,
92
(
12
), pp.
2860
2870
.
28.
Krawczuk
,
M.
,
Palacz
,
M.
, and
Ostachowicz
,
W.
,
2003
, “
The Dynamic Analysis of a Cracked Timoshenko Beam by the Spectral Element Method
,”
J. Sound Vib.
,
264
(
5
), pp.
1139
1153
.
29.
Wang
,
G.
, and
Wereley
,
N. M.
,
2002
, “
Spectral Finite Element Analysis of Sandwich Beams With Passive Constrained Layer Damping
,”
ASME J. Vib. Acoust.
,
124
(
3
), pp.
376
386
.
30.
Arfken
,
G. B.
, and
Weber
,
H. J.
,
2005
,
Mathematical Methods for Physicists
, 6th ed.,
Elsevier Academic Press
,
Burlington, MA
.
You do not currently have access to this content.