The shape function of the finite element-least square point interpolation method (FE-LSPIM) combines the quadrilateral element for partition of unity and the least square point interpolation method (LSPIM) for local approximation, and inherits the completeness properties of meshfree shape functions and the compatibility properties of FE shape functions, and greatly reduces the numerical dispersion error. This paper derives the formulas and performs the dispersion analysis for the FE-LSPIM. Numerical results for benchmark problems show that, the FE-LSPIM yields considerably better results than the finite element method (FEM) and element-free Galerkin method (EFGM).
Issue Section:
Research Papers
References
1.
Babuška
, I.
, Ihlenburg
, F.
, Paik
, E. T.
, and Sauter
, S. A.
, 1995
, “A Generalized Finite Element Method for Solving the Helmholtz Equation in Two Dimensions With Minimal Pollution
,” Comput. Methods Appl. Mech. Eng.
, 128
(3–4
), pp. 325
–359
.10.1016/0045-7825(95)00890-X2.
Bales
, L.
, and Lasiecka
, I.
, 1995
, “Continuous Finite Elements in Space and Time for the Nonhomogeneous Wave Equation
,” Comput. Math. Appl.
, 27
(3
), pp. 91
–102
.10.1016/0898-1221(94)90048-53.
Ihlenburg
, F.
, and Babuška
, I.
, 1995
, “Finite Element Solution of the Helmholtz Equation With High Wave Number. Part 1: The h-Version of the FEM
,” Comput. Math. Appl.
, 30
(9
), pp. 9
–37
.10.1016/0898-1221(95)00144-N4.
Richter
, G. R.
, 1994
, “An Explicit Finite Element Method for the Wave Equation
,” Appl. Numer. Math.
, 16
(1–2
), pp. 65
–80
.10.1016/0168-9274(94)00048-45.
Jenkins
, E. W.
, Rivière
, B.
, and Wheeler
, M. F.
, “A Priori Error Estimates for Mixed Finite Element Approximations of the Acoustic Wave Equation
,” SIAM J. Numer. Anal.
, 40
(5
), pp. 1698
–1715
.10.1137/S00361429013880686.
Chen
, J. T.
, Chen
, K. H.
, and Chyuan
, S. W.
, 1999
, “Numerical Experiments for Acoustic Modes of a Square Cavity Using the Dual Boundary Element Method
,” Appl. Acoust.
, 57
(4
), pp. 293
–325
.10.1016/S0003-682X(98)00062-07.
Estorff
, O. V.
, 2000
, Boundary Elements in Acoustics: Advances and Applications
, WIT Press
, Southampton, UK
, Chap. 4.8.
Wu
, T. W.
, 2000
, Boundary Element Acoustics: Fundamentals and Computer Codes
, WIT Press
, Southampton, UK
, Chap. 2.9.
Deraemaeker
, A.
, Babuska
, I.
, and Bouillard
, P.
, 1999
, “Dispersion and Pollution of the FEM Solution for the Helmholtz Equation in One, Two, and Three Dimension
,” Int. J. Numer. Methods Eng.
, 46
(3
), pp. 471
–499
.10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-610.
Thompson
, L.
, and Pinsky
, P.
, 1995
, “A Galerkin Least-Squares Finite Element Method for the Two-Dimensional Helmholtz Equation
,” Int. J. Numer. Methods Eng.
, 38
(2
), pp. 371
–397
.10.1002/nme.162038030311.
Melenk
, J. M.
, and Babuška
, I.
, 1996
, “The Partition of Unity Finite Element Method: Basic Theory and Applications
,” Comput. Methods Appl. Mech. Eng.
, 139
(1–4
), pp. 289
–314
.10.1016/S0045-7825(96)01087-012.
Harari
, I.
, and Frederic
, M.
, 2004
, “Numerical Investigations of Stabilized Finite Element Computations for Acoustics
,” Wave Motion
, 39
(6
), pp. 339
–349
.10.1016/j.wavemoti.2003.12.00113.
Petersen
, S.
, Dreyer
, D.
, and Estorff
, O. V.
, 2006
, “Assessment of Finite and Spectral Element Shape Functions or Efficient Iterative Simulations of Interior Acoustics
,” Comput. Methods Appl. Mech. Eng.
, 195
(7
), pp. 6463
–6478
.10.1016/j.cma.2006.01.00814.
Harari
, I.
, 2006
, “A Survey of Finite Element Methods for Time-Harmonic Acoustics
,” Comput. Methods Appl. Mech. Eng.
, 195
(2
), pp. 1594
–1607
.10.1016/j.cma.2005.05.03015.
Thompson
, L. L.
, 2006
, “A Review of Finite-Element Methods for Time-Harmonic Acoustics
,” J. Acoust. Soc. Am.
, 119
(3
), pp. 1315
–1330
.10.1121/1.216498716.
Bouillard
, P.
, and Suleau
, S.
, 1998
, “Element-Free Galerkin Solutions for Helmholtz Problems: Formulation and Numerical Assessment of the Pollution Effect
,” Comput. Methods Appl. Mech. Eng.
, 162
(5
), pp. 317
–335
.10.1016/S0045-7825(97)00350-217.
Bouillard
, P.
, Lacroix
, V.
, and De Bel
, E.
, 2004
, “A Wave-Oriented Meshless Formulation for Acoustical and Vibro-Acoustical Applications
,” Wave Motion
, 39
(5
), pp. 295
–305
.10.1016/j.wavemoti.2003.12.00318.
Kireeva
, O.
, Mertens
, T.
, and Bouillard
, P.
, 2006
, “A Coupled EFGM–CIE Method for Acoustic Radiation
,” Comput. Struct.
, 84
(2
), pp. 2092
–2099
.10.1016/j.compstruc.2006.04.01119.
Wenterodt
, C.
, and Estorff
, O. V.
, 2009
, “Dispersion Analysis of the Meshfree Radial Point Interpolation Method for the Helmholtz Equation
,” Int. J. Numer. Methods Eng.
, 77
(2
), pp. 1670
–1689
.10.1002/nme.246320.
Rajendran
, S.
, and Zhang
, B. R.
, 2007
, “A FE-Meshfree QUAD4 Element Based on Partition of Unity
,” Comput. Methods Appl. Mech. Eng.
, 197
(6
), pp. 128
–147
.10.1016/j.cma.2007.07.01021.
Rajendran
, S.
, and Zhang
, B. R.
, 2008
, “FE-Meshfree QUAD4 Element for Free-Vibration Analysis
,” Comput. Methods Appl. Mech. Eng.
, 197
(2
), pp. 3595
–3604
.10.1016/j.cma.2007.11.01222.
Yao
, L. Y.
, Yu
, D. J.
, Cui
, X. Y.
, and Zhou
, J. W.
, 2012
, “A Hybrid Finite Element-Least Square Point Interpolation Method for Solving Acoustic Problems
,” Noise Control Eng. J.
, 60
(1
), pp. 97
–112
.10.3397/1.367618723.
Suleau
, S.
, Deraemaeker
, A.
, and Bouillard
, P.
, 2000
, “Dispersion and Pollution of Meshless Solution for the Helmholtz Equation
,” Comput. Methods Appl. Mech. Eng.
, 190
(1
), pp. 639
–657
.10.1016/S0045-7825(99)00430-2Copyright © 2015 by ASME
You do not currently have access to this content.