In statistical energy analysis (SEA) modeling, it is desirable that the SEA coupling loss factors (CLFs) between two continuously connected subsystems can be estimated in a convenient way. A simple SEA modeling technique is recommended in that continuous coupling interfaces may be replaced by sets of discrete points, provided the points are spaced at an appropriate distance apart. Consequently, the simple CLF formulae derived from discretely-connected substructures can be applied for continuous coupling cases. Based on the numerical investigations on SEA modeling of two thin plates connected along a line, a point-spacing criterion is recommended by fitting the point- and line-connection data of the two plates. It shows that the point spacing depends on not only the wavelengths but also the wavelength ratio of the two coupled subsystems.

References

1.
Lyon
,
R. H.
, and
DeJong
,
R. G.
,
1995
,
Theory and Application of Statistical Energy Analysis
,
Butterworth
,
London
.
2.
Woodhouse
,
J.
,
1981
, “
An Introduction to Statistical Energy Analysis of Structural Vibration
,”
J. Appl. Acoust.
,
14
, pp.
455
469
.10.1016/0003-682X(81)90004-9
3.
Fahy
,
F. J.
,
1994
, “
Statistical Energy Analysis: A Critical Review
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
346
, pp.
431
447
.10.1098/rsta.1994.0027
4.
Finnveden
,
S.
,
2011
, “
A Quantitative Criterion Validating Coupling Power Proportionality in Statistical Energy Analysis
,”
J. Sound Vib.
,
330
, pp.
87
109
.10.1016/j.jsv.2010.08.003
5.
Langley
,
R. S.
,
1990
, “
A Derivation of the Coupling Loss Factor Used in Statistical Energy Analysis
,”
J. Sound Vib.
,
141
, pp.
207
219
.10.1016/0022-460X(90)90835-N
6.
Maxit
,
L.
, and
Guyader
,
J. -L.
,
2001
, “
Estimation of SEA Coupling Loss Factors Using a Dual Formulation and FEM Modal Information Part 1: Theory; Part 2: Numerical Applications
,”
J. Sound Vib.
,
239
, pp.
907
948
.10.1006/jsvi.2000.3192
7.
Mace
,
B. R.
,
2005
, “
Statistical Energy Analysis: Coupling Loss Factors, Indirect Coupling and System Modes
,”
J. Sound Vib.
,
279
, pp.
141
170
.10.1016/j.jsv.2003.10.040
8.
Langley
,
R.
,
2008
, “
Recent Advances and Remaining Challenges in the Statistical Energy Analysis of Dynamic Systems
,”
Proceedings of the 7th European Conference on Structural Dynamics
,
Southampton
, UK, July 7–9.
9.
Simmons
,
C.
,
1991
, “
Structure-Borne Sound Transmission Through Plate Junctions and Estimates of SEA Coupling Loss Factors Using the Finite Element Method
,”
J. Sound Vib.
,
144
, pp.
215
227
.10.1016/0022-460X(91)90745-6
10.
Fahy
,
F. J.
, and
Ruivo
,
H. M.
,
1997
, “
Determination of Statistical Energy Analysis Loss Factors by Means of an Input Power Modulation Technique
,”
J. Sound Vib.
,
203
, pp.
763
779
.10.1006/jsvi.1996.0892
11.
DeLanghe
,
K.
, and
Sas
,
P.
,
1996
, “
Statistical Analysis of the Power Injection Method
,”
J. Acoust. Soc. Am.
,
100
, pp.
294
303
.10.1121/1.415915
12.
Craik
,
R. J. M.
, and
Smith
,
R. J.
,
2000
, “
Sound Transmission Through Lightweight Parallel Plates, Part II: Structural-Borne Sound
,”
Appl. Acoust.
,
61
, pp.
247
269
.10.1016/S0003-682X(99)00071-7
You do not currently have access to this content.