This paper investigates how the natural frequencies of planetary gears tend to gather into clusters (or groups). This behavior is observed experimentally and analyzed in further detail by numerical analysis. There are three natural frequency clusters at relatively high frequencies. The modes at these natural frequencies are marked by planet gear motion and contain strain energy in the tooth meshes and planet bearings. Each cluster contains one rotational, one translational, and one planet mode type discussed in previous research. The clustering phenomenon is robust, continuing through parameter variations of several orders of magnitude. The natural frequency clusters move together as a group when planet parameters change. They never intersect, but when the natural frequencies clusters approach each other, they exchange modal properties and veer away. When central member parameters are varied, the clusters remain nearly constant except for regions in which natural frequencies simultaneously shift to different cluster groups. There are two conditions that disrupt the clustering effect or diminish its prominence. One is when the planet parameters are similar to those of the other components, and the other is when there are large differences in mass, moment of inertia, bearing stiffness, or mesh stiffness among the planet gears. The clusters remain grouped together with arbitrary planet spacing.

References

1.
Cunliffe
,
F.
,
Smith
,
J. D.
, and
Welbourn
,
D. B.
,
1974
, “
Dynamic Tooth Loads in Epicyclic Gears
,”
J. Eng. Ind.
,
95
(
2
), pp.
578
584
.10.1115/1.3438367
2.
Botman
,
M.
,
1976
, “
Epicyclic Gear Vibrations
,”
J. Eng. Ind.
,
98
(
3
), pp.
811
815
.10.1115/1.3439034
3.
Lin
,
J.
, and
Parker
,
R. G.
,
1999
, “
Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration
,”
ASME J. Vibr. Acoust.
,
121
(
3
), pp.
316
321
.10.1115/1.2893982
4.
Lin
,
J.
, and
Parker
,
R. G.
,
2000
, “
Structured Vibration Characteristics of Planetary Gears With Unequally Spaced Planets
,”
J. Sound Vib.
,
233
(
5
), pp.
921
928
.10.1006/jsvi.1999.2581
5.
Ericson
,
T. M.
, and
Parker
,
R. G.
,
2013
, “
Planetary Gear Modal Vibration Experiments and Correlation Against Lumped Parameter and Finite Element Models
,”
J. Sound Vib.
,
332
(
9
), pp.
2350
2375
.10.1016/j.jsv.2012.11.004
6.
Wu
,
X.
, and
Parker
,
R. G.
,
2008
, “
Modal Properties of Planetary Gears With an Elastic Continuum Ring Gear
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031014
.10.1115/1.2839892
7.
Parker
,
R. G.
, and
Wu
,
X.
,
2010
, “
Vibration Modes of Planetary Gears With Unequally Spaced Planets and an Elastic Ring Gear
,”
J. Sound Vib.
,
329
(
11
), pp.
2265
2275
.10.1016/j.jsv.2009.12.023
8.
Kiracofe
,
D. R.
, and
Parker
,
R. G.
,
2007
, “
Structured Vibration Modes of General Compound Planetary Gear Systems
,”
ASME J. Vibr. Acoust.
,
129
(
1
), pp.
1
16
.10.1115/1.2345680
9.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2012
, “
Vibration Properties of High-Speed Planetary Gears With Gyroscopic Effects
,”
ASME J. Vibr. Acoust.
,
134
(
6
),
p
. 061014.10.1115/1.4006646
10.
Lin
,
J.
, and
Parker
,
R. G.
,
1999
, “
Sensitivity of Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters
,”
J. Sound Vib.
,
228
(
1
), pp.
109
128
.10.1006/jsvi.1999.2398
11.
Lin
,
J.
, and
Parker
,
R. G.
,
2001
, “
Natural Frequency Veering in Planetary Gears
,”
Mech. Struct. Mach.
,
29
(
4
), pp.
411
429
.10.1081/SME-100107620
12.
Guo
,
Y.
, and
Parker
,
R. G.
,
2010
, “
Sensitivity of General Compound Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters
,”
ASME J. Vibr. Acoust.
,
132
(
1
), p.
011006
.10.1115/1.4000461
13.
Frater
,
J.
,
August
,
R.
, and
Oswald
,
F. B.
,
1982
, “
Vibration in Planetary Gear Systems With Unequal Planet Stiffness
,” NASA(TM–83428).
14.
Velex
,
P.
, and
Flamand
,
L.
,
1996
, “
Dynamic Response of Planetary Trains to Mesh Parametric Excitations
,”
ASME J. Mech. Design
,
118
(
1
), pp.
7
14
.10.1115/1.2826860
15.
Toda
,
A.
, and
Botman
,
M.
,
1979
, “
Planet Indexing in Planetary Gears for Minimum Vibration
,”
ASME Design Engineering Technical Conference
, No. A80–15730, ASME. St. Louis, MO.
16.
August
,
R.
, and
Kasuba
,
R.
,
1986
, “
Torsional Vibrations and Dynamic Loads in a Basic Planetary Gear System
,”
J. Vib. Acoust. Stress
, Reliab. Design,
108
(
3
), pp.
348
353
.10.1115/1.3269349
17.
Inalpolat
,
M.
, and
Kahraman
,
A.
,
2008
, “Dynamic Modelling of Planetary Gears of Automatic Transmissions,”
Proceedings of the Institution of Mechanical Engineers—Part K: Journal of Multi-Body Dynamics
,
222
(
3
), pp.
229
242
.10.1243/14644193JMBD138
18.
Guo
,
Y.
, and
Parker
,
R. G.
,
2010
, “
Purely Rotational Model and Vibration Modes of Compound Planetary Gears
,”
Mech. Mach. Theory
,
45
(
3
), pp.
365
377
.10.1016/j.mechmachtheory.2009.09.001
19.
Kahraman
,
A.
,
1994
, “
Natural Modes of Planetary Gear Trains
,”
J. Sound Vib.
,
173
(
1
), pp.
125
130
.10.1006/jsvi.1994.1222
20.
Saada
,
A.
, and
Velex
,
P.
,
1995
, “
An Extended Model for the Analysis of the Dynamic Behavior of Planetary Trains
,”
ASME J. Mech. Design
,
117
(
2
), pp.
241
47
.10.1115/1.2826129
21.
Kahraman
,
A.
,
1993
, “
Planetary Gear Train Dynamics
,”
ASME J. Mech. Design
,
116
(
3
), pp.
713
720
.10.1115/1.2919441
22.
Eritenel
,
T.
, and
Parker
,
R. G.
,
2009
, “
Modal Properties of Three-Dimensional Helical Planetary Gears
,”
J. Sound Vib.
,
325
(
1–2
), pp.
397
420
.10.1016/j.jsv.2009.03.002
23.
Ericson
,
T. M.
, and
Parker
,
R. G.
,
2010
, “
Vibration Measurements of an OH-58D Helicopter Planetary Gear Under Operating Conditions
,” American Helicopter Society Forum, Vol. 66, AHS.
24.
Thomson
,
W. T.
, and
Dahleh
,
M. D.
,
1998
,
Theory of Vibration With Applications
, 5th ed.,
Prentice-Hall
,
Upper Saddle River, NJ
.
25.
Ericson
,
T. M.
, and
Parker
,
R. G.
,
2013
, “
Experimental Quantification of the Effects of Torque on the Dynamic Behavior and System Parameters of Planetary Gears
,” Mechanism and Machine Theory (submitted).
26.
Leissa
,
A. W.
,
1974
, “
On a Curve Veering Aberration
,”
J. Appl. Math., Phys.
,
25
(
1
), pp.
99
111
.10.1007/BF01602113
27.
Montestruc
,
A.
,
2011
, “
Influence of Planet Pin Stiffness on Load Sharing in Planetary Gear Drives
,”
ASME J. Mech. Design
,
133
, p.
014501
.10.1115/1.4002971
28.
Hicks
,
R.
,
1967
, “
Load Equalizing Means for Planetary Pinions
,” U.S. Patent No. 3,303,713.
29.
Fox
,
G.
, and
Jallat
,
E.
,
2006
, “
Epicyclic Gear System
,” U.S. Patent No. 6,994,651.
30.
Seager
,
D. L.
,
1975
, “
Conditions for Neutralization of Excitation by Teeth in Epicyclic Gearing
,”
J. Mech. Eng. Sci.
,
17
(
5
), pp.
293
298
.10.1243/JMES_JOUR_1975_017_042_02
31.
Parker
,
R. G.
,
2000
, “
A Physical Explanation for the Effectiveness of Planet Phasing to Suppress Planetary Gear Vibration
,”
J. Sound Vib.
,
236
(
4
), pp.
561
573
.10.1006/jsvi.1999.2859
32.
Parker
,
R. G.
, and
Lin
,
J.
,
2004
, “
Mesh Phasing Relationships in Planetary and Epicyclic Gears
,”
ASME J. Mech. Design
,
126
(
2
), pp.
365
370
.10.1115/1.1667892
33.
Guo
,
Y.
, and
Parker
,
R. G.
,
2011
, “
Analytical Determination of Mesh Phase Relations in General Compound Planetary Gears
,”
Mech. Mach. Theory
,
46
(
12
), pp.
1869
1887
.10.1016/j.mechmachtheory.2011.07.010
34.
Singh
,
A.
,
2010
, “
Load Sharing Behavior in Epicyclic Gears: Physical Explanation and Generalized Formulation
,”
Mech. Mach. Theory
,
45
(
3
), pp.
511
530
.10.1016/j.mechmachtheory.2009.10.009
35.
Cheon
,
G.-J.
, and
Parker
,
R. G.
,
2004
, “
Influence of Manufacturing Errors on the Dynamic Characteristics of Planetary Gear Systems
,”
KSME Int. J.
,
18
(
4
), pp.
606
621
.
36.
Singh
,
A.
,
2005
, “
Application of a System Level Model to Study the Planetary Load Sharing Behavior
,”
ASME J. Mech. Design
,
127
, pp.
469
476
.10.1115/1.1864115
37.
Guo
,
Y.
, and
Parker
,
R. G.
,
2012
, “
Stiffness Matrix Calculation of Rolling Element Bearings Using a Finite Element/Contact Mechanics Model
,”
Mech. Mach. Theory
,
51
, pp.
32
45
.10.1016/j.mechmachtheory.2011.12.006
You do not currently have access to this content.