This paper proposes a simple expression for calculating the restoring and damping forces of an air spring equipped with a small pipe. Air springs are commonly used in railway vehicles, automobiles, and various vibration isolators. The air spring discussed in this study consists of two tanks connected by a long pipe. Using a pipe instead of an orifice enables flexibility in the arrangement of the two tanks. In addition, this makes it possible to manufacture a thin air spring. A vertical translational oscillating system, which consists of a single mass supported by this type of air spring, looks like a single-degree-of-freedom (SDOF) system. However, it may have two resonance points. In this paper, we propose a vibratory model of a system supported by the air spring. With the proposed model it is possible to correctly reproduce the two resonance points of a system consisting of a single mass supported by this type of air spring. In our analysis, assuming that the vibration amplitude is small and the flow through the pipe is laminar, we derive the spring constant and damping coefficient of an air spring subjected to a simple harmonic motion. Then, we calculate the frequency response curves for the system and compare the calculated results with the experimental values. According to the experiment, there is a remarkable amplitude dependency in this type of air spring, so the frequency response curves for the system change with the magnitude of the input amplitude. It becomes clear that the calculation results are in agreement with the limit case when the input amplitude approaches zero. We use a commercially available air spring in this experiment. Our study is useful in the design of thin air spring vibration isolators for isolating small vibrations.

References

1.
Tokita
,
Y.
, and
Morimura
,
M.
,
1992
, “
Vibration Control Handbook
,” Vol.
1
,
FUJI Techno Systems Co., Ltd.
, pp.
413
420
(in Japanese).
2.
Kuneida
,
M.
,
1958
, “
Theory and Experiment on Vertical Vibration of Rolling
,”
Railway Tech. Res. Rep.
,
3
(
6
), pp.
11
44
, (in Japanese).
3.
Naoteru
,
O. D. A.
, and
Nishimura
,
S.
,
1969
, “
Vibration of Air Suspension Vehicles and Their Design
,”
Trans. Jap. Soc. Mech. Eng.
,
35
(
273
), pp.
996
1002
, (in Japanese).10.1299/kikai1938.35.996
4.
Koyanagi
,
S.
,
1983
, “
Optimum Design Methods of Air Spring Suspension Systems
,”
Trans. Jap. Soc. Mech. Eng.
,
49
(
439
), pp.
410
415
, (in Japanese).10.1299/kikaic.49.410
5.
Koyanagi
,
S.
,
1986
, “
The Influences of Nonlinearities on Air Spring Vibration Isolation Characteristics
,”
Trans. Jap. Soc. Mech. Eng.
,
52
(
480
), pp.
2084
2089
, (in Japanese).10.1299/kikaic.52.2084
6.
Asami
,
T.
,
Yokota
,
Y.
,
Ise
,
T.
,
Honda
,
I.
, and
Sakamoto
,
H.
,
2013
, “
Theoretical and Experimental Analysis of the Non-Linear Characteristics of an Air Spring With an Orifice
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011012
.10.1115/1.4007677
7.
Fujita
,
T.
,
Okimura
,
H.
,
Yamada
,
T.
,
Inoue
,
N.
,
Endoh
,
S.
, and
Kagawa
,
T.
,
1997
, “
Affection of Connecting Conduit to Characteristics of Air Spring With Subtank
,”
Trans. Jap. Soc. Mech. Eng.
,
63
(
610
), pp.
1920
1926
, (in Japanese).10.1299/kikaib.63.1920
8.
Takahasshi
,
M.
, and
Wakui
,
S.
,
2009
, “
Improvement of Isolated Table Using Auxiliary Tank
,”
J. Jap. Soc. Precision Eng.
,
75
(
4
), pp.
542
547
, (in Japanese).10.2493/jjspe.75.542
9.
Berg
,
M.
,
2000
, “
A Three-Dimensional Airspring Model With Friction and Orifice Damping
,”
Vehicle Syst. Dyn.
,
33
, pp.
528
539
.
10.
Docquier
,
N.
,
Fisette
,
P.
, and
Jeanmart
,
H.
,
2007
, “
Multiphysic Modelling of Railway Vehicles Equipped With Pneumatic Suspensions
,”
Vehicle Syst. Dyn.
,
45
(
6
), pp.
505
524
.10.1080/00423110601050848
11.
Bruni
,
S.
,
Vinolas
,
J.
,
Berg
,
M.
,
Polach
,
O.
, and
Stichel
,
S.
,
2011
, “
Modelling of Suspension Components in a Rail Vehicle Dynamics Context
,”
Vehicle Syst. Dyn.
,
49
(
7
), pp.
1021
1072
.10.1080/00423114.2011.586430
12.
Facchinetti
,
A.
,
Mazzola
,
L.
,
Alfi
,
S.
, and
Bruni
,
S.
,
2010
, “
Mathematical Modelling of the Secondary Airspring Suspension in Railway Vehicles and Its Effect on Safety and Ride Comfort
,”
Vehicle Syst. Dyn.
,
48
, pp.
429
449
.10.1080/00423114.2010.486036
13.
Kat
,
C. J.
, and
Els
,
P. S.
,
2009
, “
Interconnected Air Spring Model
,”
Math. Comput. Model., Dyn. Syst.
,
15
(
4
), pp.
353
370
.10.1080/13873950902955783
14.
Debra
,
D. B.
,
1984
, “
Design of Laminar Flow Restrictors for Damping Pneumatic Vibration Isolators
,”
CIRP Ann. Manuf. Tech.
,
33
(
1
), pp.
351
356
.10.1016/S0007-8506(07)61441-3
15.
Bachrach
,
B. I.
, and
Rivin
,
E.
,
1983
, “
Analysis of a Damped Pneumatic Spring
,”
J. Sound Vib.
,
86
(
2
), pp.
191
197
.10.1016/0022-460X(83)90748-4
16.
Quaglia
,
G.
, and
Sorli
,
M.
,
2001
, “
Air Suspension Dimensionless Analysis and Design Procedure
,”
Vehicle Syst. Dyn.
,
35
(
6
), pp.
443
475
.10.1076/vesd.35.6.443.2040
17.
Zhao
,
T. S.
, and
Cheng
,
P.
,
1996
, “
Experimental Studies on the Onset of Turbulence and Frictional Losses in an Oscillatory Turbulent Pipe Flow
,”
Int. J. Heat Fluid Flow
,
17
(
4
), pp.
356
362
.10.1016/0142-727X(95)00108-3
18.
Jeung-Hoon
,
L.
, and
Kwang-Joon
,
K.
,
2007
, “
Modeling of Nonlinear Complex Stiffness of Dual-Chamber Pneumatic Spring for Precision Vibration Isolations
,”
J. Sound Vib.
,
301
(
3–5
), pp.
909
926
.10.1016/j.jsv.2006.10.029
19.
Eickhoff
,
B. M.
,
Evans
,
J. R.
, and
Minnis
,
A. J.
,
1995
, “
A Review of Modelling Methods for Railway Vehicle Suspension Components
,”
Vehicle Syst. Dyn.
,
24
, pp.
469
496
.10.1080/00423119508969105
20.
Toyofuku
,
K.
,
Yamada
,
C.
,
Kagawa
,
T.
, and
Fujita
,
T.
,
1999
, “
Study on Dynamic Characteristic Analysis of Air Spring With Auxiliary Chamber
,”
JSAE Rev.
,
20
, pp.
349
355
.10.1016/S0389-4304(99)00032-6
21.
Uchida
,
S.
,
1956
, “
The Pulsating Viscous Flow Superposed on the Steady Laminar Motion of Incompressible Fluid in a Circular Pipe
,”
Zeitschrift fur Angewandte Mathematik und Physik
,
7
(
5
), pp.
403
422
.10.1007/BF01606327
22.
Shibata
,
K.
,
Misaji
,
K.
, and
Kato
,
H.
,
1993
, “
Vibration Characteristics of Rubber (Nonlinear Vibration Characteristics Depending on Frequency and Amplitude of Displacement)
,”
Trans. Jap. Soc. Mech. Eng.
,
92
(
1833
), pp.
2408
2414
, (in Japanese).
You do not currently have access to this content.