This paper presents a novel wavelet-based methodology for feature extraction and classification. To compare the performance of the proposed approach with major existing methods, a number of sets of real-world machine data acquired by mounting accelerometer sensors on the cylinder head of an engine have been extensively tested. The developed method not only bypasses the demerits of the previous techniques but also demonstrates superior performance.

1.
Samimy
,
B.
, and
Rizzoni
,
G.
, 1996, “
Mechanical Signature Analysis Using Time Frequency Signal Processing: Application to Internal Combustion Engine Knock Detection
,”
Proc. IEEE
0018-9219,
84
(
9
), pp.
1330
1343
.
2.
Zheng
,
G. T.
, and
McFadden
,
P. D.
, 1999, “
A Time-Frequency Distribution for Analysis of Signal With Transient Components and Its Application to Vibration Analysis
,”
Trans. ASME, J. Vib. Acoust.
1048-9002,
121
, pp.
328
333
.
3.
Samimy
,
B.
,
Rizzoni
,
G.
,
Sayeed
,
A. M.
, and
Jones
,
D. L.
, 1996, “
Design of Training Data-Based Quadratic Detectors With Application to Mechanical Systems
,”
Proceedings of ICASSP-96
,
Atlanta, GA
.
4.
Millo
,
F.
, and
Ferrro
,
C. V.
, 1998, “
Knock in S. I Engines: A Comparison Between Different Techniques for Detection and Control
,” SAE Paper No. 982477.
5.
Huang
,
Q.
,
Liu
,
Y.
,
Liu
,
H.
, and
Cao
,
L.
, 2003, “
A New Vibration Diagnosis Method Based on the Neural Network and Wavelet Analysis
,” SAE Paper No. 2003-01-0363.
6.
Tafreshi
,
R.
,
Sassani
,
F.
,
Ahmadi
,
H.
, and
Dumont
,
G.
, 2005, “
Local Discriminant Bases in Machine Fault Diagnosis Using Vibration Signals
,”
Integr. Comput. Aided Eng.
1069-2509,
12
(
2
), pp.
147
158
.
7.
Worret
,
R.
,
Benhardt
,
S.
,
Schwarz
,
F.
, and
Spicher
,
U.
, 2002, “
Application of Different Cylinder Pressure Based Knock Detection Methods in Spark Ignition Engines
,” SAE Paper No. 2002-01-1668.
8.
Carstens-Behrens
,
S.
, and
Bohme
,
J. F.
, 2001, “
Fast Knock Detection Using Pattern Signals
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
,
Salt Lake City, UT
,
5
, pp.
3145
3148
.
9.
Tafreshi
,
R.
,
Ahmadi
,
H.
,
Sassani
,
F.
, and
Dumont
,
G.
, 2002, “
Informative Wavelet Algorithm in Diesel Engine Diagnosis
,”
The 17th IEEE International Symposium on Intelligent Control (ISIC’02)
,
Vancouver, Canada
, pp.
361
366
.
10.
Rubini
,
R.
, and
Meneghetti
,
U.
, 2001, “
Application of the Envelope and Wavelet Transform Analyses for the Diagnosis of Incipient Faults in Ball Bearings
,”
Mech. Syst. Signal Process.
0888-3270,
15
(
2–3
), pp.
287
302
.
11.
Tse
,
P. W.
,
Peng
,
Y. H.
, and
Yam
,
R.
, 2001, “
Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis—Their Effectiveness and Flexibilities
,”
ASME J. Vibr. Acoust.
0739-3717,
123
.
12.
Ahmadi
,
H.
,
Dumont
,
G.
,
Sassani
,
F.
, and
Tafreshi
,
R.
, 2003, “
Performance of Informative Wavelets for Classification and Diagnosis of Machine Faults
,”
Int. J. Wavelets, Multiresolut. Inf. Process.
0219-6913,
1
(
3
).
13.
Wang
,
W. J.
, and
McFadden
,
P. D.
, 1996, “
Application of Wavelets to Gearbox Vibration Signals for Fault Detection
,”
ASME J. Vibr. Acoust.
0739-3717,
192
, pp.
927
939
.
14.
Chen
,
D.
, and
Wang
,
W. J.
, 2002, “
Classification of Wavelet Map Patterns Using Multi-Layer Neural Networks for Gear Fault Detection
,”
Mech. Syst. Signal Process.
0888-3270,
16
(
4
), pp.
695
704
.
15.
Zheng
,
H.
,
Li
,
Z.
, and
Chen
,
X.
, 2002, “
Gear Fault Diagnosis Based on Continuous Wavelet Transform
,”
Mech. Syst. Signal Process.
0888-3270,
16
(
2–3
), pp.
447
457
.
16.
Liu
,
B.
, and
Ling
,
S. F.
, 1999, “
On the Selection of Informative Wavelets for Machinery Diagnosis
,”
Mech. Syst. Signal Process.
0888-3270,
13
(
1
).
17.
Chui
,
C. K.
, 1992,
An Introduction to Wavelets
, Vol.
1
,
Academic
,
New York
.
18.
Coifman
,
R. R.
,
Meyer
,
Y.
, and
Wickerhauser
,
M. V.
, 1992,
Wavelet Analysis and Signal Processing, Wavelets and Their Applications
,
M. B.
Ruskai
, eds.,
Jones and Barlett Publishers Inc.
,
Boston
, pp.
153
178
.
19.
Saito
,
N.
, and
Coifman
,
R. R.
, 1995, “
Local Discriminant Bases and Their Applications
,”
J. Math. Imaging Vision
0924-9907,
5
(
4
), pp.
337
358
.
20.
Gray
,
R. M.
, 1990,
Entropy and Information Theory
,
Springer-Verlag
,
Berlin
.
21.
Watanabe
,
S.
, and
Kaminuma
,
T.
, 1988, “
Recent Developments of the Minimum Entropy Algorithm
,”
Proceedings of the International Conference on Pattern Recognition
,
IEEE
,
New York
, pp.
536
540
.
22.
Coifman
,
R. R.
, and
Wickerhauser
,
M. V.
, 1992, “
Entropy-Based Algorithm for Best Basis Selection
,”
IEEE Trans. Inf. Theory
0018-9448,
38
, pp.
713
718
.
23.
Englehart
,
K.
,
Hudgins
,
B.
,
Parker
,
P. A.
, and
Stevenson
,
M.
, 1999, “
Classification of the Myoelectric Signal Using Time-Frequency Based Representations
,”
Med. Eng. Phys.
1350-4533,
21
, pp.
431
438
.
24.
Saito
,
N.
,
Coifman
,
R. R.
,
Geshwind
,
F. B.
, and
Warner
,
F.
, 2002, “
Discriminant Feature 24 Using Empirical Probability Density Estimation and a Local Basis Library
,”
Pattern Recogn.
0031-3203,
35
(
12
), pp.
2841
2852
.
25.
Englehart
,
K.
,
Hudgins
,
B.
, and
Parker
,
P. A.
, 2001, “
A Wavelet Based Continuous Classification Scheme for Multifunction Myoelectric Control
,”
IEEE Trans. Biomed. Eng.
0018-9294,
48
(
3
), pp.
302
311
.
26.
Englehart
,
K.
,
Hudgins
,
B.
,
Parker
,
P. A.
, and
Stevenson
,
M.
, 1999, “
Improving Myoelectric Signal Classification Using Wavelet Packets and Principal Component Analysis
,”
Proc. IEEE
0018-9219,
1
, pp.
569
570
.
27.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
28.
Ripley
,
B. D.
, 1996,
Pattern Recognition and Neural Networks
,
Cambridge University
,
Cambridge
.
29.
Fausett
,
L.
, 1994,
Fundamentals of Neural Networks, Architectures, Algorithms, and Applications
,
Prentice-Hall
,
Englewood, Cliffs, NJ
.
30.
Hagan
,
M. T.
,
Demuth
,
H. B.
, and
Beale
,
M.
, 1996,
Neural Network Design
,
PWS
,
Boston, MA
.
You do not currently have access to this content.