In this paper, a numerical simulation technique based on the local interaction simulation approach (LISA)/sharp interface model (SIM) is used to study the propagation of Lamb waves in aluminum and orthotropic plates and wave interactions with damage. The LISA/SIM model allows for accurate and fast simulations of sharp changes in material properties across interfaces associated with damage or specimen boundaries. Damage in the form of holes and changes in density and/or stiffnesses are studied for three different plates. These local changes in density and stiffness have dimensions not exceeding the wave length of the interrogating wave form. Wave scatter from these damage sites is shown at different time instants and at specific spatial locations. Multiple site damage cases are studied for all the plate structures. The different scatter patterns associated with intersecting and nonintersecting surface cracks are also studied. Results obtained from a combination of single site damage cases are compared with the composite multiple site damage case to study the usability of commonly applied algorithms for identifying damage. The benefits of observing multiple directions of the displacement field are demonstrated. It is shown that the out-of-plane measurements give a clearer indication of damage sites than the in-plane measurements.

1.
Doebling
,
S. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
, 1996, “
Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their Vibration Characteristics: A Literature Review
,” Los Alamos National Laboratory Report No. LA-13070-MS.
2.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hemez
,
F. M.
,
Shunk
,
D. D.
,
Stinemates
,
D. W.
, and
Nadler
,
B. R.
, 2001, “
A Review of Structural Health Monitoring Literature: 1996–2001
,” Los Alamos National Laboratory Report LA-13976-MS.
3.
Alleyne
,
D. N.
, and
Cawley
,
P.
, 1992, “
The Interaction of Lamb Waves With Defects
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
39
(
3
), pp.
381
397
.
4.
Bar-Cohen
,
Y.
,
Mal
,
A.
, and
Chang
,
Z.
, 1998, “
Composite Material Defects Characterization Using Leaky Lamb Wave Dispersion Data
,”
Proceedings of SPIE, NDE Techniques for Aging Infrastructure & Manufacturing, Conference NDE of Materials and Composites II
,
San Antonio, TX
, Mar. 31–Apr. 2, Paper No. 3396-25, Vol. 3396.
5.
Bartoli
,
I.
,
di Scalea
,
F. L.
,
Fateh
,
M.
, and
Viola
,
E.
, 2005, “
Modeling Guided Wave Propagation With Application to the Long-Range Defect Detection in Railroad Tracks
,”
NDT & E Int.
0963-8695,
38
, pp.
325
334
.
6.
Prasad
,
S. M.
,
Balasubramaniam
,
K.
, and
Krishnamurthy
,
C. V.
, 2004, “
Structural Health Monitoring of Composite Structures Using Lamb Wave Tomography
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
73
79
.
7.
Rayleigh
,
L.
, 1885, “
On Waves Propagating Along the Plane Surface on an Elastic Solid
,”
Proc. London Math. Soc.
0024-6115,
17
, pp.
4
11
.
8.
Lamb
,
H.
, 1917, “
On Waves in an Elastic Plate
,”
Proc. R. Soc. London, Ser. A
0950-1207,
93
(
648
), pp.
114
128
.
9.
Worlton
,
D. C.
, 1957, “
Ultrasonic Testing With Lamb Waves
,”
Non-Destructive Testing
,
15
, pp.
218
222
.
10.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
, 2007, “
Review of Guided-Wave Structural Health Monitoring
,”
Shock Vib.
1070-9622,
39
(
2
), pp.
91
114
.
11.
Lee
,
B. C.
, and
Staszewski
,
W. J.
, 2003, “
Modelling of Lamb Waves for Damage Detection in Metallic Structures: Part I. Wave Propagation
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
804
814
.
12.
Delsanto
,
P. P.
,
Whitcombe
,
T.
,
Chaskelis
,
H. H.
, and
Mignogna
,
R. B.
, 1992, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials I: The One-Dimensional Case
,”
Wave Motion
0165-2125,
16
, pp.
65
80
.
13.
Delsanto
,
P. P.
,
Schechter
,
R. S.
,
Chaskelis
,
H. H.
,
Mignogna
,
R. B.
, and
Kline
,
R. B.
, 1994, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials II: The Two-Dimensional Case
,”
Wave Motion
0165-2125,
20
, pp.
295
314
.
14.
Delsanto
,
P. P.
,
Schechter
,
R. S.
, and
Mignogna
,
R. B.
, 1997, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials III: The Three-Dimensional Case
.”
Wave Motion
0165-2125,
26
, pp.
329
339
.
15.
Agostini
,
V.
,
Baboux
,
C.
,
Delsanto
,
P. P.
,
Monnier
,
T.
, and
Olivero
,
D.
, “
Application of Lamb Waves for the Characterization of Composite Plates
,”
Non Destructive Characterization of Materials IX
,
AIP Proceedings
, edited by
R. E.
Green
,
American Institute for Physics
,
New York
, pp.
455
460
.
16.
Lee
,
B. C.
, and
Staszewski
,
W. J.
, 2003, “
Modelling of Lamb Waves for Damage Detection in Metallic Structures: Part II. Wave Interactions With Damage
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
815
824
.
17.
Sundararaman
,
S.
, and
Adams
,
D. E.
, 2007, “
Simulation of Lamb Wave Propagation in a C458 Al-Li Friction Stir Welded Plate
,”
Proceedings of the Conference of the Society for the Advancement of Materials and Process Engineering
,
Baltimore, MD
, pp.
1
15
.
18.
Graff
,
K. F.
, 1991,
Wave Motion in Elastic Solids
,
Dover
,
New York
.
19.
Balasubramanyam
,
R.
,
Quinney
,
D.
,
Challis
,
R. E.
, and
Todd
,
C. P. D.
, 1996, “
A Finite-Difference Simulation of Ultrasonic Lamb Waves in Metal Sheets With Experimental Verification
,”
J. Phys. D
0022-3727,
29
(
1
), pp.
147
155
.
20.
Alleyne
,
D.
, 1991,
The Nondestructive Testing of Plates using Ultrasonic Lamb Waves
, Ph.D. thesis, Imperial College of Science, Technology and Medicine.
21.
Sinor
,
M.
, 2004, “
Numerical Modelling and Visualisation of Elastic Wave Propagation in Arbitrary Complex Media
,”
Proceedings of the Eighth Workshop on Multimedia in Physics Teaching and Learning of the European Physical Society
,
Karl-Franzens-Universität Graz
, Sept. 9–11, Paper available online http://kfe.fjfi.cvut.cz/~sinor/docs/mptl2004/mptl2004-sinor.pdfhttp://kfe.fjfi.cvut.cz/~sinor/docs/mptl2004/mptl2004-sinor.pdf
22.
Sundararaman
,
S.
,
White
,
J. R.
,
Adams
,
D. E.
, and
Jata
,
K. V.
, 2006, “
Application of Wave Propagation and Vibration-Based Structural Health Monitoring Techniques to Friction Stir Welded Plate and Sandwich Honeycomb Panel
,” Review of Progress in Quantitative Nondestructive Evaluation 2006,
D. O.
Thompson
and
D. E.
Chimenti
, eds. Paper No. G8-F182, Vol.
26
, pp.
1
8
.
You do not currently have access to this content.