Abstract

The vibration characteristics of laminated sandwich plates subjected to in-plane forces is studied taking imperfections at the layer interfaces. The plate problem, which is unattended so far, is modeled by a refined plate theory where the transverse shear stress has parabolic through thickness variation with continuity at the layer interfaces and it becomes zero at the plate top and bottom surfaces. The interfacial imperfection is represented by a linear spring layer model. Based on these a new triangular element is developed where proper attention has been paid on the inter-elemental continuity requirement posed by the plate theory.

References

1.
Yang
,
P. C.
,
Norris
,
C. H.
, and
Stavsky
,
Y.
, 1966, “
Elastic Wave Propagation in Heterogeneous Plates
,”
Int. J. Solids Struct.
0020-7683,
2
, pp.
665
684
.
2.
Srinivas
,
S.
, 1973, “
A Refined Analysis of Composite Laminates
,”
J. Sound Vib.
0022-460X,
30
, pp.
495
507
.
3.
Toledano
,
A.
, and
Murakami
,
H.
, 1987, “
Composite Plate Theory for Arbitrary Laminate Configurations
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
181
189
.
4.
Li
,
X.
, and
Lue
,
D.
, 1992, “
An Improved Shear Stress Continuity Theory for Both Thin and Thick Composite Laminates
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
502
509
.
5.
Robbins
,
D. H.
, and
Reddy
,
J. N.
, 1993, “
Modeling of Thick Composites Using a Layer-Wise Laminate Theory
,”
Int. J. Numer. Methods Eng.
0029-5981,
36
, pp.
655
677
.
6.
Di Sciuva
,
M.
, 1984, “
A Refined Transverse Shear Deformation Theory for Multilayered Anisotropic Plates
,”
Atti Accad. Sci. Torino
,
118
, pp.
279
295
.
7.
Lue
,
D.
, and
Li
,
X.
, 1996, “
An Overall View of Laminate Theories Based on Displacement Hypothesis
,”
,
30
, pp.
1539
1560
.
8.
Bhaskar
,
K.
, and
Varadan
,
T. K.
, 1989, “
Refinement of Higher Order Laminated Plate Theories
,”
AIAA J.
0001-1452,
27
, pp.
1830
1831
.
9.
Di Sciuva
,
M.
, 1992 “
Multilayered Anisotropic Plate Models With Continuous Interlaminar Stress
,”
Comput. Struct.
0045-7949,
22
, pp.
149
167
.
10.
Lee
,
C. Y.
, and
Liu
,
D.
, 1991, “
Interlaminar Shear Stress Continuity Theory for Laminated Composite Plates
,”
AIAA J.
0001-1452,
29
, pp.
2010
2012
.
11.
Cho
,
M.
, and
Parmerter
,
R. R.
, 1993, “
Efficient Higher Order Plate Theory for General Lamination Configurations
,”
AIAA J.
0001-1452,
31
, pp.
1299
1308
.
12.
Carrera
,
E.
, 2003, “
A Historical Review of Ziz-Zag Theories for Multilayered Plates and Shells
,”
Appl. Mech. Rev.
0003-6900,
56
, pp.
287
308
.
13.
Ambartsumyan
,
S. A.
, 1970,
Theory of Anisotropic Plates
,
J. E.
Ashton
ed.
Technomic
, Stanford, CT, pp.
176
180
.
14.
Reddy
,
J. N.
, 1984, “
A Simple Higher-Order Theory for Laminated Composites
,”
ASME J. Appl. Mech.
0021-8936,
51
, pp.
745
752
.
15.
Toledano
,
A.
, and
Murakami
,
H.
, 1988, “
Shear Deformable Two-Layer Plate Theory With Interlayer Slip
,” ASCE
J. Eng. Mech.
0733-9399,
114
, pp.
604
623
.
16.
Cheng
,
Z.
,
Jemah
,
A. K.
, and
Williams
,
F. W.
, 1996a, “
Theory of Multilayered Anisotropic Plates With Weakened Interfaces
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
1019
1026
.
17.
Di Sciuva
,
M.
, 1997, “
A Geometrically Nonlinear Theory of Multilayered Plates With Interlayer Slip
,”
AIAA J.
0001-1452,
35
, pp.
1753
1759
.
18.
Sun
,
C. T.
, and
Whitney
,
J. M.
, 1976, “
Dynamic Response of Laminated Composite Plates Under Initial Stress
,”
AIAA J.
0001-1452,
14
, pp.
199
203
.
19.
Yang
,
I. H.
, and
Kuo
,
W. S.
, 1993, “
Stability and Vibration of Initially Stressed Thick Laminated Plates
,”
J. Sound Vib.
0022-460X
68
, pp.
285
297
.
20.
Di Sciuva
,
M.
, 1993, “
A General Quadrilateral Multi-Layered Antisotropic Plate element With Continuous Interlaminar Stresses
,”
Comput. Struct.
0045-7949
47
, pp.
91
105
.
21.
Di Sciuva
,
M.
, and
Icardi
,
U.
, 1995, “
Analysis of Thick Multi-Layered Anisotropic Plates by a Higher Order Plate Element
,”
AIAA J.
0001-1452,
33
, pp.
2435
2437
.
22.
Polit
,
O.
, and
Touratier
,
M.
, 2000, “
Higher Order Triangular Sandwich Plate Finite Elements for Linear and Nonlinear Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
85
, pp.
305
324
.
23.
Cho
,
M.
, and
Parmerter
,
R. R.
, 1994, “
Finite Element for Composite Plate Bending Based on Efficient Higher Order Theory
,”
AIAA J.
0001-1452,
32
, pp.
2241
2245
.
24.
Specht
,
B.
, 1988, “
Modified Shape Functions for the Three Nodded Plate Bending Element Passing the Patch Test
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
705
715
.
25.
Carrera
,
E.
, and
Demasi
,
L.
, 2002, “
Multilayered Finite Plate Element Based on Reissner Mixed Variational Theorem, Part I: Theory and Part II: Numerical analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
, pp.
191
231
, and
Carrera
,
E.
, and
Demasi
,
L.
, 2002, “
Multilayered Finite Plate Element Based on Reissner Mixed Variational Theorem, Part I: Theory and Part II: Numerical analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
pp.
253
291
.
26.
Carrera
,
E.
, 1999, “
Transverse Normal Stress Effect in Multilayered Plates
,”
J. Appl. Mech.
0021-8936,
66
, pp.
1004
1012
.
27.
Chakrabarti
,
A.
, and
Sheikh
,
A. H.
, 2002, “
A New Triangular Element Based on a Layer Wise Zigzag Theory for the Analysis of Composite Panels having Sandwich Construction
,”
Proceedings of the International Conference on Ship and Ocean Technology
,
IIT Kharagpur
, India, December 18-20, pp.
267
-
272
.
28.
Corr
,
R. B.
, and
Jennings
,
A.
, 1976, “
A Simultaneous Iteration Algorithm for Symmetric Eigenvalue Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
10
, pp.
647
663
.
29.
Wu
,
C. P.
, and
Chen
,
W. Y.
, 1994, “
Vibration and Stability of Laminated Plates Based on a Local High Order plate Theory
,”
J. Sound Vib.
0022-460X,
177
, pp.
503
520
.
30.
Cho
,
K. N.
,
Bert
,
C. W.
, and
Striz
,
A. G.
, 1991, “
Free Vibrations of Laminated Rectangular Plates Analyzed by High Order Individual-Layer Theory
,”
J. Sound Vib.
0022-460X,
145
, pp.
429
442
.
31.
Srinivas
,
S.
, and
Rao
,
A. K.
, 1970, “
Bending, Vibration and Buckling of Simply Supported Thick Orthotropic Rectangular Plates and Laminates
,”
Int. J. Solids Struct.
0020-7683
6
, pp.
1463
1481
.
32.
Cheng
,
Z.
,
Howson
,
W. P.
, and
Williams
,
F. W.
, 1997, “
Modelling of Weakly Bonded Laminated Composite Plates at large Deflections
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
3583
3599
.
33.
Di Sciuva
,
M.
, 1986, “
Bending, Vibration and Buckling of Simply supported Thick Multilayered Orthotropic Plates: An evaluation of a new displacement model
,”
J. Sound Vib.
0022-460X,
105
, pp.
425
442
.
You do not currently have access to this content.