Abstract

A high precision triangular plate element is developed for the free vibration analysis of thermally buckled composite sandwich plates. Due to an uneven thermal expansion in the two principal material directions, the buckling mode of the plate may change from one pattern to another in the postbuckling region for certain fiber orientation and aspect ratio of the plate. Because of this buckle pattern change, the sequence of natural frequencies of the plate is also suddenly altered. By examining the buckling and free vibration modes of the plate, a clear picture of buckle pattern change and vibration mode shifting is presented. Numerical results show that if the shape of a free vibration mode is similar to the plate buckling mode then the natural frequency of that mode will drop to zero when the temperature reaches the buckling temperature.

1.
Gossard
,
M. L.
,
Seide
,
P.
, and
Roberts
,
W. M.
, 1952, “
Thermal Buckling of Plates
,” NACA TN-2771.
2.
Whitney
,
J M.
.
, and
Ashton
,
J. E.
, 1971, “
Effect of Environment on the Elastic Response of Layered Composite Plate
,”
AIAA J.
0001-1452,
9
(
9
), pp.
1708
1713
.
3.
Tang
,
S.
, 1969, “
Natural Vibration of Isotropic Plates with Temperature-Dependent Properties
,”
AIAA J.
0001-1452,
7
(
4
), pp.
725
727
.
4.
Bailey
,
C. D.
, 1973, “
Vibration of Thermal Stressed Plates with Various Boundary Conditions
,”
AIAA J.
0001-1452,
11
(
1
), pp.
14
19
.
5.
Tomar
,
J. S.
, and
Gupta
,
A. K.
, 1983, “
Thermal Effect on Frequencies of an Orthotropic Rectangular Plate of Linear Varying Thickness
,”
J. Sound Vib.
0022-460X,
90
(
3
), pp.
325
331
.
6.
Bisplinghoff
,
R. L.
, and
Pian
,
T. H. H.
, 1957, “
On the Vibrations of Thermal Buckled Bars and Plates
,”
Proceedings of 9th International Congress for Applied Mechanics
,
7
, pp.
307
318
.
7.
Yang
,
T. Y.
, and
Han
,
A. D.
, 1983, “
Buckled Plate Vibration and Large Amplitude Vibrations Using High-Order Triangular Elements
,”
AIAA J.
0001-1452,
21
(
5
), pp.
758
766
.
8.
Locke
,
J.
, and
Mei
,
C.
, 1990, “
Finite Element, Large-Deflection Random Response of Thermal Buckled Beams
,”
AIAA J.
0001-1452,
28
(
12
), pp.
2125
2131
.
9.
Zhou
,
R. C.
,
Xue
,
D. T.
,
Mei
,
C.
, and
Gray
,
C. C.
, 1993, “
Vibration of Thermally Buckled Composite Plates with Initial Deflections Using Triangular Elements
,” AIAA Report No. 93-1321.
10.
Tenneti
,
R.
, and
Chandrashekhara
,
K.
, 1994, “
Nonlinear Thermal Dynamic Analysis of Graphite/Aluminum Composite Plates
,”
AIAA J.
0001-1452,
32
(
9
), pp.
1931
1933
.
11.
Locke
,
J. E.
, 1994, “
Vibration Analysis of Heated Anisotropic Plates with Free Edge Conditions
,”
J. Aircr.
0021-8669,
31
(
3
), pp.
696
702
.
12.
Librescu
,
L.
,
Lin
,
W.
,
Nemeth
,
M. P.
, and
Starnes
,
J. H.
Jr.
, 1996, “
Vibration of Geometrically Imperfect Panels Subjected to Thermal and Mechanical Loads
,”
J. Spacecr. Rockets
0022-4650,
33
(
2
), pp.
285
291
.
13.
Rajagopal
,
S. V.
,
Singh
,
G.
, and
Rao
,
Y. V. K. S.
, 1987, “
Large-Deflection and Nonlinear Vibration of Multilayered Sandwich Plates
,”
AIAA J.
0001-1452,
25
(
1
), pp.
130
133
.
14.
Lee
,
C. H.
, and
Sun
,
C. T.
, 1995, “
The Nonlinear Frequency and Large Amplitude of Sandwich Composites with Embedded Shape Memory Alloy
,”
J. Reinf. Plast. Compos.
0731-6844,
14
(
6
), pp.
1160
1173
.
15.
Rao
,
K. M.
, 1985, “
Buckling Analysis of Anisotropic Sandwich Plates Faced with Fiber-Reinforced Plastics
,”
AIAA J.
0001-1452,
23
(
8
), pp.
1247
1253
.
16.
Ibrahim
,
I. M.
,
Farah
,
A.
, and
Rizk
,
M. N. F.
, 1981, “
Dynamic Analysis of Unbalanced Anisotropic Sandwich Plates
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951,
107
, pp.
405
418
.
17.
Shiau
,
L. C.
, and
Wu
,
T. Y.
, 1993, “
A High Precision Higher Order Triangular Element for Free Vibration of General Laminated Plates
,
J. Sound Vib.
0022-460X,
161
(
2
), pp.
265
279
.
18.
Ko
,
W. L.
, 1995, “
Predictions of Thermal Buckling Strengths of Hypersonic Aircraft Sandwich Panels Using Minimum Potential Energy and Finite Element Methods
,” NASA TM-4643.
You do not currently have access to this content.