This paper presents a multistage regression method to obtain an empirical joint probability density function (PDF) for rainflow amplitudes and means of non-Gaussian stress processes with asymmetric distribution. The proposed PDF model captures a wide range of non-Gaussian stress processes characterized by five parameters: Standard deviation, skewness, kurtosis, irregularity factor and mean frequency. It is shown that the fatigue prediction from the closed-form empirical PDF based on the multistage regression analysis agrees well with that from extensive Monte Carlo simulations. The ultimate purpose of the method is to provide a tool for engineers to predict the remaining fatigue life of a structure with direct measurements of stress responses at critical locations on a structure or stress responses at various hot-spots on a structure from the finite element analysis without conducting further Monte Carlo simulations.

1.
Wirsching
,
P. H.
, and
Light
,
M. C.
, 1980, “
Fatigue Under Wide Band Random Stresses
,”
J. Struct. Div. ASCE
0044-8001,
106
, pp.
1574
1607
.
2.
Lutes
,
L. D.
,
Corazao
,
M. I. J.
,
Hu
,
S.
, and
Zimmerman
,
J.
, 1984, “
Stochastic Fatigue Damage Accumulation
,”
J. Struct. Eng.
0733-9445,
110
, pp.
2585
2601
.
3.
Ortiz
,
K.
, and
Chen
,
N. K.
, 1987, “
Fatigue Damage Prediction for Stationary Wideband Random Stresses
,”
Proceedings of the 5th International Conference on Applications of Statistics and Probability in Soil and Structural Engineering (ICASP 5)
, pp.
309
316
,
Vancouver
, British Columbia, Canada.
4.
Dirlik
,
T.
, 1985, Application of Computers in Fatigue Analysis, Ph.D. Dissertation, University of Warwick.
5.
Bishop
,
N. W. M.
, and
Sherratt
,
F.
, 1990, “
Theoretical Solution for the Estimation of Rainflow Ranges From Power Spectral Density Data
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
13
, pp.
311
326
.
6.
Zhao
,
W.
, and
Baker
,
M. J.
, 1992, “
On the Probability Density Function of Rainflow Stress Range for Stationary Gaussian Processes
,”
Int. J. Fatigue
0142-1123,
14
, pp.
121
135
.
7.
Winterstein
,
S. R.
, 1988, “
Nonlinear Vibration Models for Extremes and Fatigue
,”
J. Eng. Mech.
0733-9399,
114
, pp.
1772
1790
.
8.
Lutes
,
L. D.
, and
Wang
,
J.
, 1993, “
Kurtosis Effects on Stochastic Structural Fatigue
,”
Proceedings of the International Conference on Structural Safety and Reliability
, pp.
1091
1097
,
Innsbruck
, Austria.
9.
Wang
,
X.
, and
Sun
,
J. Q.
, 2005, “
Multi-Stage Regression Fatigue Analysis of Non-Gaussian Stress Processes
,”
J. Sound Vib.
0022-460X,
280
, pp.
455
465
.
10.
Grigoriu
,
M.
, 1998, “
Simulation of Stationary Non-Gaussian Translation Processes
,”
J. Eng. Mech.
0733-9399,
124
, pp.
121
126
.
11.
Deodatis
,
G.
, and
Micaletti
,
R. C.
, 2001, “
Simulation of Highly Skewed Non-Gaussian Stochastic Processes
,”
J. Eng. Mech.
0733-9399,
127
, pp.
1284
1295
.
12.
Silverman
,
B. W.
, 1986,
Density Estimation for Statistics and Data Analysis
,
Chapman and Hall
, New York.
13.
Dowling
,
N. E.
, 1993,
Mechanical Behavior of Materials
,
Prentice Hall
, Englewood Cliffs, New Jersey.
14.
Klemenc
,
J.
, and
Fajdiga
,
M.
, 2004, “
An Improvement to the Methods for Estimating the Statistical Dependencies of the Parameters of Random Load States
,”
Int. J. Fatigue
0142-1123,
26
, pp.
141
154
.
15.
Wang
,
X.
,
Eisenbrey
,
J.
,
Zeitz
,
M.
, and
Sun
,
J. Q.
, 2004, “
Multistage Regression Analysis of Acoustical Properties of Polyurethane Foams
,”
J. Sound Vib.
0022-460X,
273
, pp.
1109
1117
.
16.
Dowling
,
N. E.
, 1999,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
,
Prentice Hall
, Upper Saddle River, New Jersey.
17.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
, 1970, “
A Stress-Strain Function for the Fatigue of Metals
,”
J. Mater.
0022-2453,
5
, pp.
767
778
.
18.
Kihl
,
D. P.
, and
Sarkani
,
S.
, 1999, “
Mean Stress Effects in Fatigue of Welded Steel Joints
,”
Probab. Eng. Mech.
0266-8920,
14
, pp.
97
104
.
19.
ASTM
, 1990, “
Cycle Counting in Fatigue Analysis
,”
Annual Book of ASTM Standards
,
03.01
.
20.
Chernick
,
M. R.
, 1999,
Bootstrap Methods: A Practitioner’s Guide
,
Wiley
, Hoboken, New Jersey.
21.
Seber
,
G. A. F.
, and
Wild
,
C. J.
, 2003,
Nonlinear Regression
,
Wiley
, Hoboken, New Jersey.
22.
Huet
,
S.
,
Bouvier
,
A.
,
Poursat
,
M. A.
, and
Jolivet
,
E.
, 2004,
Statistical tools for nonlinear regression: A practical guide with S-PLUS and R examples
,
Springer-Verlag
, New York.
You do not currently have access to this content.