In this paper, we use the method of homoclinic orbits to study the existence and stability of discrete breathers, i.e., spatially localized and time-periodic oscillations of a class of one-dimensional (1D) nonlinear lattices. The localization can be at one or several sites and the 1D lattices we investigate here have linear interaction between nearest neighbors and a quartic on-site potential Vu=12Ku2±14u4, where the (+) sign corresponds to “hard spring” and (−) to “soft spring” interactions. These localized oscillations—when they are stable under small perturbations—are very important for physical systems because they seriously affect the energy transport properties of the lattice. Discrete breathers have recently been created and observed in many experiments, as, e.g., in the Josephson junction arrays, optical waveguides, and low-dimensional surfaces. After showing how to construct them, we use Floquet theory to analyze their linear (local) stability, along certain curves in parameter space (α,ω), where α is the coupling constant and ω the frequency of the breather. We then apply the Smaller Alignment Index method (SALI) to investigate more globally their stability properties in phase space. Comparing our results for the ± cases of Vu, we find that the regions of existence and stability of breathers of the “hard spring” lattice are considerably larger than those of the “soft spring” system. This is mainly due to the fact that the conditions for resonances between breathers and linear modes are much less restrictive in the former than the latter case. Furthermore, the bifurcation properties are quite different in the two cases: For example, the phenomenon of complex instability, observed only for the “soft spring” system, destabilizes breathers without giving rise to new ones, while the system with “hard springs” exhibits curves in parameter space along which the number of monodromy matrix eigenvalues on the unit circle is constant and hence breather solutions preserve their stability character.

1.
MacKay
,
R. S.
, and
Aubry
,
S.
,
1994
, “
Proof of Existence of Breathers in Time-Reversible or Hamiltonian Networks of Weakly Coupled Oscillators
,”
Nonlinearity
,
7
, p.
1623
1623
.
2.
Flach
,
S.
, and
Willis
,
C. R.
,
1998
, “
Discrete Breathers
,”
Phys. Rep.
,
295
, p.
181
181
.
3.
Hennig
,
D.
, and
Tsironis
,
G.
,
1999
, “
Wave Transmission in Nonlinear Lattices
,”
Phys. Rep.
,
307
, p.
333
333
.
4.
Bambusi
,
D.
,
1996
, “
Exponential Stability of Breathers in Hamiltonian Networks of Weakly Coupled Oscillators
,”
Nonlinearity
,
9
, p.
433
433
.
5.
Aubry
,
S.
,
1997
, “
Breathers in Nonlinear Lattices: Existence, Stability and Quantization
,”
Physica D
,
108
, p.
201
201
.
6.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
,
J. Chem. Phys.
,
21
, p.
1087
1087
.
7.
Nose
,
S.
,
1984
, “
A Unified Formulation of the Constant Temperature Molecular Dynamics Method
,”
J. Chem. Phys.
,
81
, p.
511
511
.
8.
Nose
,
S.
,
1994
, “
A Molecular Dynamics Method for Simulations in the Canonical Ensemble
,”
Mol. Phys.
,
52
, p.
255
255
.
9.
Bountis
,
T.
,
Capel
,
H. W.
,
Kollmann
,
M.
,
Ross
,
J.
,
Bergamin
,
J. M.
, and
van der Weele
,
J. P.
,
2000
, “
Multibreathers and Homoclinic Orbits in 1-Dimensional Nonlinear Lattices
,”
Phys. Lett. A
,
268
, p.
50
50
.
10.
Bergamin
,
J. M.
,
Bountis
,
T.
, and
Vrahatis
,
M. N.
,
2002
, “
Homoclinic Orbits of Invertible Maps
,”
Nonlinearity
,
15
, p.
1603
1603
.
11.
Bountis
,
T.
,
Bergamin
,
J. M.
, and
Basios
,
V.
,
2002
, “
Stabilization of Discrete Breathers Using Continuous Feedback Control
,”
Phys. Lett. A
,
295
, p.
115
115
.
12.
Bergamin
,
J. M.
,
2003
, “
Numerical Approximation of Breathers in Lattices With Nearest-Neighbor Interactions
,”
Phys. Rev. E
,
67
,
026703
026703
.
13.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1994
, “
A Method for Studying Waves With Spatially Localized Envelopes in a Class of Nonlinear Partial Differential Equations
,”
Wave Motion
,
19
, p.
391
391
.
14.
Skokos
,
Ch.
,
2001
, “
Alignment Indices: A New, Simple Method for Determining the Ordered or Chaotic Nature of Orbits
,”
J. Phys. A
,
34
, p.
10029
10029
.
15.
Skokos, Ch., Antonopoulos, Ch., Bountis, T. C., and Vrahatis, M. N., 2002, “Smaller Alignment Index (SALI): Detecting Order and Chaos in Conservative Dynamical Systems,” Proc. of 4th GRACM Congress on Computational Mechanics, Vol. IV, D. T. Tsahalis, ed., p. 1496.
16.
Skokos, Ch., Antonopoulos, Ch., Bountis, T. C., and Vrahatis, M. N., 2003, “Smaller Alignment Index (SALI): Determining the Ordered or Chaotic Nature of Orbits in Conservative Dynamical System,” Proc. Conference Libration Point Orbits and Applications, G. Go´mez, M. W. Lo, and J. J. Masdemont, eds., World Scientific, p. 653.
17.
Skokos
,
Ch.
,
Antonopoulos
,
Ch.
,
Bountis
,
T. C.
, and
Vrahatis
,
M. N.
,
2003
, “
How Does the Smaller Alignment Index (SALI) Distinguish Order From Chaos?
Prog. Theor. Phys. Suppl.
,
150
, p.
439
439
.
18.
Skokos, Ch., Antonopoulos, Ch., Bountis, T. C., and Vrahatis, M. N., 2003, “Detecting Order and Chaos in Hamiltonian Systems by the SALI Method,” J. Phys. A, 37, p. 6269.
19.
Wiggins, S., 1990, An Introduction to Applied Dynamical Systems and Chaos, Springer-Verlag, New York.
20.
Vrahatis
,
M. N.
,
1995
, “
An Efficient Method for Locating and Computing Periodic Orbits of Nonlinear Mappings
,”
J. Comput. Phys.
,
119
, p.
105
105
.
21.
Vrahatis
,
M. N.
,
1988
, “
Solving Systems of Nonlinear Equations Using the Nonzero Value of the Topological Degree
,”
ACM Transcriptions of Mathematical Software
,
14
, p.
312
312
.
22.
Vrahatis
,
M. N.
,
1988
, “
CHABIS: A Mathematical Software Package for Locating and Evaluating Roots of Systems of Nonlinear Equations
,”
ACM Transcriptions of Mathematical Software
,
14
, p.
330
330
.
23.
Contopoulos
,
G.
,
1986
, “
Qualitative Changes in 3-Dimensional Dynamical Systems
,”
Astron. Astrophys.
,
161
, p.
244
244
.
24.
Contopoulos
,
G.
,
1986
, “
Bifurcations in Systems of Three Degrees of Freedom
,”
Celest. Mech. Dyn. Astron.
,
38
, p.
1
1
.
25.
Benettin
,
G.
,
Galgani
,
L.
,
Giorgilli
,
A.
, and
Strelcyn
,
J.-M.
,
1980
, “
Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing all of Them. Part 2: Numerical Application
,”
Meccanica
,
March
, p.
21
21
.
26.
Trias
,
E.
,
Mazo
,
J. J.
, and
Orlando
,
T. P.
,
2000
, “
Discrete Breathers in Nonlinear Lattices: Experimental Detection in a Josephson Array
,”
Phys. Rev. Lett.
,
84
, p.
741
741
.
27.
Binder
,
P.
,
Abraimov
,
D.
,
Ustinov
,
A. V.
,
Flach
,
S.
, and
Zolotaryuk
,
Y.
,
2000
, “
Observation of Breathers in Josephson Ladders
,”
Phys. Rev. Lett.
,
84
, p.
745
745
.
28.
Eisenberg
,
H. S.
,
Silberberg
,
Y.
,
Morandotti
,
R.
,
Boyd
,
A. R.
, and
Aitchison
,
J. S.
,
1998
, “
Discrete Spatial Optical Solitons in Waveguide Arrays
,”
Phys. Rev. Lett.
,
81
, p.
3383
3383
.
29.
Swanson
,
B. I.
,
Brozik
,
J. A.
,
Love
,
S. P.
,
Strouse
,
G. F.
,
Shreve
,
A. P.
,
Bishop
,
A. R.
,
Wang
,
W.-Z.
, and
Salkola
,
M. I.
,
1999
, “
Observation of Intrinsically Localized Modes in a Discrete Low-Dimensional Material
,”
Phys. Rev. Lett.
,
82
, p.
3288
3288
.
You do not currently have access to this content.