A new energetic approach is proposed to predict the time-varying dynamic response in the vibroacoustic field. This approach is based on the derivation and development of a hyperbolic type energy equation. It can be derived from the transport theory, or obtained by applying fundamental energy balance equation. The focus of this paper is to compare this new energy equation with the time-varying vibrational conductivity equation used extensively in recent study of energy approaches in mid-high frequency domain. The new energy equation is evaluated numerically by comparing its solutions with the diffusion equation and exact energy results. The comparative studies are applied to a beam subjected to a transverse unit impulse, and the dispersive effect is considered.

1.
Fahy, F., 2002, “Guide for Potential Users of SEA,” Proceeding of ISMA 2002, Vol. 2, pp. 723–728.
2.
Lyon, R. H., 1975, Statistical Energy Analysis of Dynamical Systems: Theory and Application, MIT Press, Cambridge, Massachusetts.
3.
Fahy
,
F.
,
1994
, “
Statistical Energy Analysis: A Critical Overview
,”
Philos. Trans. R. Soc. London
,
A346
, pp.
431
447
.
4.
Nefske, D. J., and Sung, S. H., 1987, “Power Flow Finite Element Analysis of Dynamic Systems: Basic Theory and Application to Beams,” NCA Publication.
5.
Wohlever
,
J. C.
, and
Bernhard
,
R. J.
,
1992
, “
Mechanical Energy Flow Models of Rods and Beams
,”
J. Sound Vib.
,
153
, pp.
1
19
.
6.
Carcaterra
,
A.
, and
Sestieri
,
A.
,
1995
, “
Energy Density Equations and Power Flow in Structures
,”
J. Sound Vib.
,
188
, pp.
269
282
.
7.
Le Bot
,
A.
,
1998
, “
A Vibroacoustic Model for High Frequency Analysis
,”
J. Sound Vib.
,
211
(
4
), pp.
537
554
.
8.
Ichchou
,
M. N.
,
Le Bot
,
A.
, and
Jezequel
,
L.
,
1997
, “
Energy Models of One-Dimensional Multi-Propagative Systems
,”
J. Sound Vib.
,
201
, pp.
535
554
.
9.
Xing, J. T., and Price, W. G., 1998, “The Energy Flow Equation of Continuum Dynamics,” IUTAM Symposium on Statistical Energy Analysis, Southampton, UK 8–11 July, 1997, F. J. Fahy and W. G. Price, eds., Kluwer.
10.
Xing
,
J. T.
, and
Price
,
W. G.
,
1999
, “
A Power Flow Analysis Based on Continuum Dynamics
,”
Philos. Trans. R. Soc. London
,
A455
, pp.
401
436
.
11.
Langley
,
R. S.
,
1995
, “
On the Vibrational Conductivity Approach to High Frequency Dynamics for Two-Dimensional Structural Components
,”
J. Sound Vib.
,
182
, pp.
637
657
.
12.
Manning
,
J. E.
, and
Lee
,
K.
,
1968
, “
Predicting Mechanical Shock Transmission
,”
Shock Vibration Bulletin
,
37
(
4
), pp.
65
70
.
13.
Lai
,
M. L.
, and
Soom
,
A.
,
1990
, “
Prediction of Transient Vibration Envelopes Using Statistical Energy Analysis Techniques
,”
ASME J. Vibr. Acoust.
,
112
, pp.
127
137
.
14.
Lai
,
M. L.
, and
Soom
,
A.
,
1990
, “
Statistical Energy Analysis for the Time Integrated Transient Response of Vibrating Systems
,”
ASME J. Vibr. Acoust.
,
112
, pp.
206
213
.
15.
Pinnington
,
R. J.
, and
Lednik
,
D.
,
1996
, “
Transient Statistical Energy Analysis of an Impulsively Excited Two Oscillator System
,”
J. Sound Vib.
,
189
(
2
), pp.
249
264
.
16.
Pinnington
,
R. J.
, and
Lednik
,
D.
,
1996
, “
Transient Energy Flow Between Two Coupled Beams
,”
J. Sound Vib.
,
189
(
2
), pp.
265
287
.
17.
Weaver
,
R. L.
,
1990
, “
Diffusivity of Ultrasound in Polycrystals
,”
J. Mech. Phys. Solids
,
33
, pp.
55
86
.
18.
Ryzhik
,
L.
,
Papanicolaou
,
G.
, and
Keller
,
J. B.
,
1996
, “
Transport Equations for Elastic and Other Waves in Random Media
,”
Wave Motion
,
24
, pp.
327
370
.
19.
Falk
,
R. S.
, and
Richter
,
G. R.
,
1999
, “
Explicit Finite Element Method for Symmetric Hyperbolic Equation
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
36
, pp.
935
952
.
20.
Savin, E., 2002, “Transient Transport Equations of the Energy Observables in Heterogeneous Structures,” 9th International Congress on Sound and Vibration, Orlando, FL, July 08–11.
21.
Morse, K. U., and Feshbach, H., 1953, Methods of Theoretical Physics. Mc-Graw Hill, New York.
22.
Sui
,
F.
,
Ichchou
,
M. N.
, and
Jezequel
,
L.
,
2002
, “
Prediction of Vibroacoustics Energy Using a Discretized Transient Local Energy Approach and Comparison With TSEA
,”
J. Sound Vib.
,
251
(
1
), pp.
163
180
.
23.
Ichchou
,
M. N.
,
Le Bot
,
A.
, and
Jezequel
,
L.
,
2001
, “
A Transient Local Energy Approach as an Alternative to Transient SEA: Wave and Telegraph Equations
,”
J. Sound Vib.
,
246
(
5
), pp.
829
840
.
24.
Bodin
,
E.
,
Bre´vart
,
B.
,
Wagstaff
,
P.
, and
Borello
,
G.
,
2002
, “
Pyrotechnic Shock Response Predictions Combining Statistical Energy Analysis and Local Random Phase Reconstruction
,”
J. Acoust. Soc. Am.
,
112
(
1
), pp.
156
163
.
You do not currently have access to this content.