The critical variational equation governing the stability of phase-locked modes for a pair of diffusively coupled van der Pol oscillators is presented in the form of a linear oscillator with a periodic damping coefficient that involves the van der Pol limit cycle. The variational equation is transformed into a Hill’s equation, and stability boundaries are obtained by analytical and numerical methods. We identify a countable set of resonances and obtain expressions for the associated stability boundaries as power series expansions of the associated Hill determinants. We establish an additional “zero mean damping” condition and express it as a Pade´ approximant describing a surface that combines with the Hill determinant surfaces to complete the stability boundary. The expansions obtained are evaluated to visualize the first three resonant surfaces which are compared with numerically determined slices through the stability boundaries computed over the range 0.4<ε<5. [S0739-3717(00)00502-X]

1.
Landl
,
R.
,
1975
, “
A Mathematical Model for Vortex-Induced Oscillation of Structures
,”
ASME J. Appl. Mech.
,
41
, pp.
219
234
.
2.
van der Pol
,
B.
,
1926
, “
On Relaxation Oscillations
,”
Philos. Mag.
,
7
, pp.
978
992
.
3.
Cohen
,
A. H.
,
Holmes
,
P. J.
, and
Rand
,
R. H.
,
1982
, “
The Nature of the Coupling between Segmental Oscillators of the Lamprey Spinal Generator for Locomotion: A Mathematical Model
,”
J. Math. Biol.
,
13
, pp.
345
369
.
4.
Rand
,
R. H.
,
Storti
,
D. W.
,
Upadhyaya
,
S. K.
, and
Cooke
,
J. R.
,
1981
, “
Dynamics of Coupled Stomatal Oscillators
,”
J. Math. Biol.
,
15
, pp.
131
149
.
5.
Carrier
,
G. F.
,
1953
, “
Boundary Layer Problems in Applied Mechanics
,”
Adv. Appl. Mech.
,
3
, pp.
1
20
.
6.
Kevorkian, J., and Cole, J. D., 1981, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, pp. 67–82.
7.
Be´lair, J., 1983, “Phase Locking in Linearly Coupled Relaxation Oscillators,” Ph.D. thesis, Cornell University, Ithaca, NY.
8.
Grasman, J., 1987, Asymptotic Methods for Relaxation Oscillations and Applications, Springer-Verlag, New York, pp. 55–72, 115–148.
9.
Andersen
,
C. M.
, and
Geer
,
J. F.
,
1982
, “
Power Series Expansions for the Frequency and Period of the Limit Cycle of the van der Pol Equation
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
42
, pp.
678
693
.
10.
Dadfar
,
M. B.
,
Geer
,
J.
, and
Andersen
,
C. M.
,
1984
, “
Perturbation Analysis of the Limit Cycle of the van der Pol Equation
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
44
, pp.
881
895
.
11.
Gillies
,
A. W.
,
1954
, “
On the Transformations of Singularities and Limit Cycles of the Variational Equations of van der Pol
,”
Q. J. Mech. Appl. Math.
,
7
, pp.
152
167
.
12.
Holmes
,
P. J.
, and
Rand
,
D. A.
,
1978
, “
Bifurcations of the Forced van der Pol Oscillator
,”
Q. Appl. Math.
,
35
, pp.
495
509
.
13.
Palm
,
E.
, and
Tveitereid
,
M.
,
1980
, “
On Coupled van der Pol Equations
,”
Q. J. Mech. Appl. Math.
,
33
, pp.
267
276
.
14.
Glass
,
L.
, and
Mackey
,
M. C.
,
1979
, “
A Simple Model For Phase Locking of Biological Oscillators
,”
J. Math. Biol.
,
7
, pp.
339
352
.
15.
Chen, S.-S., 1987, Flow-Induced Vibration of Circular Cylindrical Structures, Springer-Verlag, New York.
16.
Rand
,
R. H.
, and
Ellison
,
J. L.
,
1986
, “
Dynamics of Stomate Fields in Leaves
,”
Lectures on Mathematics in the Life Sciences
,
18
, pp.
51
86
.
17.
Rand
,
R. H.
, and
Holmes
,
P. J.
,
1980
, “
Bifurcation of Periodic Motions in Two Weakly Coupled van der Pol Oscillators
,”
Int. J. Non-Linear Mech.
15
, pp.
387
399
.
18.
Nayfeh, A., 1983, Perturbation Methods, Wiley-Interscience, New York, pp. 270–275.
19.
Storti
,
D. W.
, and
Rand
,
R. H.
,
1982
, “
Dynamics of Two Strongly Coupled van der Pol Oscillators
,”
Int. J. Non-Linear Mech.
17
, pp.
143
152
.
20.
Chakraborty
,
T.
, and
Rand
,
R. H.
,
1987
, “
The Transition From Phase Locking to Drift in a System of Two Weakly Coupled van der Pol Oscillators
,”
Int. J. Non-Linear Mech.
23
, pp.
369
376
.
21.
Storti
,
D. W.
, and
Rand
,
R. H.
,
1986
, “
Dynamics of Two Strongly Coupled Relaxation Oscillators
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
46
, pp.
56
67
.
22.
Storti, D. W., Nevrinceanu, C., and Reinhall, P. G., 1993, “Perturbation Solution of an Oscillator with Periodic van der Pol Damping,” Dynamics and Vibration of Time-Varying Systems and Structures, ASME DE-Vol. 56, pp. 397–402.
23.
Reinhall, P. G., and Storti, D. W., 1995, “A Numerical Investigation of Phase-Locked and Chaotic Behavior of Coupled van der Pol Oscillators,” ASME DE-Vol. 84-1, pp. 357–363.
24.
Storti, D. W., and Reinhall, P. G., 1995, “Stability of In-Phase and Out-of-Phase Modes for a Pair of Linearly Coupled van der Pol Oscillators,” in Dynamics, Control, and Stability of Structures, A. Guran, ed., World Scientific, NJ, pp. 1–23.
25.
Low, L. A., Reinhall, P. G., and Storti, D. W., 1999, “Analog Simulation of Phase Locked Modes of Diffusively Coupled van der Pol Oscillators,” Proceedings of ASME Design Engineering Technical Conferences, DETC99/VIB-8013.
26.
Storti
,
D. W.
,
1987
, “
Bifurcations Which Destroy the Out-of-Phase Mode in a Pair of Linearly Coupled Relaxation Oscillators
,”
Int. J. Non-Linear Mech.
22
, pp.
387
390
.
27.
Magnus, W., and Winkler, S., 1966, Hill’s Equation, Interscience, New York.
28.
Rand, R. H., 1984, Computer Algebra in Applied Mathematics: An Introduction to MACSYMA, Pitman Publishing, Boston, pp. 87–123.
29.
Keith
,
W. L.
, and
Rand
,
R. H.
,
1984
, “
1:1 and 2:1 Phase Entrainment in a System of Two Coupled Limit Cycle Oscillators
,”
J. Math. Biol.
,
20
, pp.
133
152
.
30.
Murray, J. D., 1989, Mathematical Biology, Springer-Verlag, New York, pp. 266–273.
You do not currently have access to this content.