An analytical method for analyzing the oscillations of a linear infinite string supported by a periodic array of nonlinear stiffnesses is developed. The analysis is based on nonsmooth transformations of a spatial variable, which leads to the elimination of singular terms (generalized functions) from the governing partial differential equation of motion. The transformed set of equations of motion are solved by regular perturbation expansions, and the resulting set of modulation equations governing the amplitude of the motion is studied using techniques from the theory of smooth nonlinear dynamical systems. As an application of the general methodology, localized time-periodic oscillations of a string with supporting stiffnesses with cubic nonlinearities are computed, and leading-order discreteness effects in the spatial distribution of the slope of the motion are detected.

1.
Anderson
P. W.
,
1958
, “
Absence of Diffusion in Certain Random Lattices
,”
Physical Review
, Vol.
109
, pp.
1492
1505
.
2.
Aubrecht
J.
, and
Vakakis
A. F.
,
1996
, “
Localized and Nonlocalized Nonlinear Normal Modes in a Multi-span Beam With Geometric Nonlinearities
,”
ASME JOURNAL OF VIBRATION AND ACOUSTICS
, Vol.
118
, No.
4
, pp.
533
542
.
3.
Cetinkaya
C.
,
Vakakis
A. F.
, and
El-Raheb
M.
,
1995
, “
Axisymmetric Elastic Wave Propagation in Weakly Coupled Layered Media of Infinite Radial Extent
,”
J. Sound Vib.
, Vol.
182
, No.
2
, pp.
283
302
.
4.
Delph
T. J.
,
Herrmann
G.
, and
Kaul
R. K.
,
1979
, “
Harmonic Wave Propagation in a Periodically Layered Infinite Elastic Body: Plane Strain, Analytical Results
,”
ASME J. Appl. Mech.
, Vol.
46
, pp.
113
119
.
5.
Delph
T. J.
,
Herrmann
G.
, and
Kaul
R. K.
,
1979
, “
Harmonic Wave Propagation in a Periodically Layered Infinite Elastic Body; Plane Strain, Numerical Results
,
ASME J. Appl. Mech.
, Vol.
47
, pp.
531
537
.
6.
Eleonsky, V., 1991, “Problems of Existence of Nontopological Solitons (Breathers) for Nonlinear Klein-Gordon Equations,” Proceedings of a NATO Advanced Research Workshop on Asymptotics Beyond all Orders, La Jolla, California.
7.
Engels
R. C.
, and
Meirovitch
L.
,
1978
, “
Response of Periodic Structures by Modal Analysis
,”
J. Sound Vib.
, Vol.
56
, No.
4
, pp.
481
493
.
8.
Fermi, E., Pasta, J., and Ulam, S., 1955, Studies of Nonlinear Problems, I, Los Alamos Scientific Laboratory Report LA-1940.
9.
Flytzanis
N.
,
Pnevmatikos
S.
, and
Remoissenet
M.
,
1985
, “
Kink, Breather, and Asymmetric Envelope or Dark Solitons in Nonlinear Chains
,”
J. Phys. C: Solid State Physics
, Vol.
18
, pp.
4603
4620
.
10.
King
M. E.
, and
Vakakis
A. p.
,
1994
, “
A Method for Studying Waves With Spatially Localized Envelopes in a Class of Nonlinear Partial Differential Equations
,”
Wave Motion
, Vol.
19
, pp.
391
405
.
11.
Kissel, G. J., 1987, “Localization in Disordered Periodic Structures,” Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.
12.
Kosevich
A. M.
, and
Kovalev
A. S.
,
1975
, “
Self-localization of Vibrations in a One-dimensional Anharmonic Chain
,”
Soviet Physics-JETP
, Vol.
40
, No.
5
, pp.
891
896
.
13.
Maslov
V. P.
, and
Omelianov
G. A.
,
1981
, “
Asymptotic Soliton-like Solutions of Equations With Small Dispersion
,”
Advances in Mathematical Sciences-Vsp. Mat. Nauk
, Vol.
36
, No.
3
, pp.
63
126
.
14.
Mead
D. J.
,
1975
a, “
Wave Propagation and Natural Modes in Periodic Systems; I. Mono-coupled Systems
,”
J. Sound Vib.
, Vol.
40
, No.
1
, pp.
1
18
.
15.
Mead
D. J.
,
1975
b, “
Wave Propagation and Natural Modes in Periodic Systems: II. Multi-coupled Systems With and Without Damping
,”
J, Sound Vib.
, Vol.
40
, No.
1
, pp.
19
39
.
16.
Mead
D. J.
,
1986
, “
A New Method of Analyzing Wave Propagation in Periodic Structures; Applications to Periodic Timoshenko Beams and Stiffened Plates
,”
J. Sound Vib.
, Vol.
104
, No.
1
, pp.
9
27
.
17.
Peyrard
M.
, and
Kruskal
M. D.
,
1984
, “
Kink Dynamics in the Highly Discrete Sine-Gordon System
,”
Physica D
, Vol.
14
, pp.
88
102
.
18.
Pilipchuk
V. N.
,
1985
, “
The Calculation of Strongly Nonlinear Systems Close to Vibration-impact Systems
,”
PMM
, Vol.
49
, No.
5
, pp.
572
578
.
19.
Pilipchuk, V. N., 1988, “A Transformation for Vibrating Systems Based on a Non-smooth Periodic Pair of Functions,” Doklady AN Ukr. SSR, Ser. A, 4, pp. 37–40 (in Russian).
20.
Pilipchuk
V. N.
,
Vakakis
A. F.
, and
Azeez
M. A. F.
,
1997
, “
Study of a Class of Subharmonic Motions Using a Nonsmooth Temporal Transformation (NSTT)
,”
Physica D
, Vol.
100
, pp.
145
164
.
21.
Richtmyer, R. D., 1985, Principles of Advanced Mathematical Physics, Vol. I. Springer Verlag.
22.
Rosenau, P., 1987, “Quasi-continuous Spatial Motion of a Mass-spring Chain,” Physica D 27, pp. 224–234.
23.
Vakakis
A. F.
,
1994
, “
Exponentially Small Splitdngs of Manifolds in a Rapidly Forced Duffing System
,”
J. Sound Vib.
, Vol.
170
No.
1
, pp.
119
129
.
24.
Vakakis
A. F.
, and
Cetinkaya
C.
,
1993
, “
Mode Localization in a Class of Multi-Degree-of-Freedom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
, Vol.
53
, pp.
265
282
.
25.
Vakakis
A. F.
, and
King
M. E.
,
1995
, “
Nonlinear Wave Transmission in a Monocoupled Elastic Periodic System
,”
J. Acoust. Soc. Am.
, Vol.
98
, No.
3
, pp.
1534
1546
.
26.
Vakakis
A. F.
,
Nayfeh
T.
, and
King
M.
,
1993
, “
A Multiple-scales Analysis of Nonlinear Localized Modes in a Cyclic Periodic System
,”
ASME J. Appl. Mech.
, Vol.
60
, No.
2
, pp.
388
397
.
27.
Vakakis
A. F.
,
King
M. E.
, and
Pearlstein
A. J.
,
1994
, “
Forced Localization in a Periodic Chain of Nonlinear Oscillators
,”
Int. J. Non-linear Mech.
, Vol.
29
, No.
3
, pp.
429
447
.
28.
Vakakis, A. F., Manevitch, L. I., Mikhlin, Yu. I., Pilipchuk, V. N., and Zevin, A. A., 1996, Normal Modes and Localization in Nonlinear Systems, Wiley Interscience, New York.
29.
Vedenova
E. G.
, and
Manevich
L. I.
,
1981
, “
Periodic and Localized Waves in Vibro-impact Systems of Regular Configuration
,”
Mashinovedenie
, Vol.
4
, pp.
21
32
.
30.
Wei
S.-T.
, and
Pierre
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry; I; Free Vibrations, II: Forced Vibrations
,”
ASME JOURNAL OF VIBRATION, ACOUSTICS, STRESS AND RELIABILITY IN DESIGN
, Vol.
110
, pp.
429
448
.
31.
Weinstein
A.
,
1985
, “
Periodic Nonlinear Waves on a Half-line
,”
Commun. Math. Phys.
, Vol.
99
, pp.
385
388
.
This content is only available via PDF.
You do not currently have access to this content.