Abstract

The Davis equation of state (EOS) is commonly used to model thermodynamic relationships for high explosive (HE) reactants. Typically, the parameters in the EOS are calibrated, with uncertainty, using a Bayesian framework and Markov Chain Monte Carlo (MCMC) methods. However, MCMC methods are computationally expensive, especially for complex models with many parameters. This paper provides a comparison between MCMC and less computationally expensive Variational methods (Variational Bayesian and Hessian Variational Bayesian) for computing the posterior distribution and approximating the posterior covariance matrix based on heterogeneous experimental data. All three methods recover similar posterior distributions and posterior covariance matrices. This study demonstrates that for this EOS parameter calibration application, the assumptions made in the two Variational methods significantly reduce the computational cost but do not substantially change the results compared to MCMC.

References

1.
Davis
,
W. C.
,
2000
, “
Complete Equation of State for Unreacted Solid Explosive
,”
Combust. Flame
,
120
(
3
), pp.
399
403
.10.1016/S0010-2180(99)00112-1
2.
Wescott
,
B. L.
,
Stewart
,
D. S.
, and
Davis
,
W. C.
,
2005
, “
Equation of State and Reaction Rate for Condensed-Phase Explosives
,”
J. Appl. Phys.
,
98
(
5
), p.
053514
.10.1063/1.2035310
3.
Aslam
,
T. D.
,
2018
, “
Shock Temperature Dependent Rate Law for Plastic Bonded Explosives
,”
J. Appl. Phys.
,
123
(
14
), p.
145901
.10.1063/1.5020172
4.
Lindquist
,
B. A.
, and
Jadrich
,
R. B.
,
2022
, “
Uncertainty Quantification for a Multi-Phase Carbon Equation of State Model
,”
J. Appl. Phys.
,
131
(
15
), p.
155104
.10.1063/5.0087210
5.
Lindquist
,
B. A.
,
Jadrich
,
R. B.
,
Heras Rivera
,
J. E.
, and
Rondini
,
L. I.
,
2023
, “
Uncertainty Quantification for High Explosive Reactant and Product Equations of State
,”
J. Appl. Phys.
,
134
(
7
), p.
075102
.10.1063/5.0157842
6.
Blei
,
D. M.
,
Kucukelbir
,
A.
, and
McAuliffe
,
J. D.
,
2017
, “
Variational Inference: A Review for Statisticians
,”
J. Am. Stat. Assoc.
,
112
(
518
), pp.
859
877
.10.1080/01621459.2017.1285773
7.
Gunapati
,
G.
,
Jain
,
A.
,
Srijith
,
P. K.
, and
Desai
,
S.
,
2022
, “
Variational Inference as an Alternative to MCMC for Parameter Estimation and Model Selection
,”
Publ. Astron. Soc. Aust.
,
39
, p.
e001
.10.1017/pasa.2021.64
8.
Rizzato
,
M.
, and
Sellentin
,
E.
,
2023
, “
Extremely Expensive Likelihoods: A variational-Bayes Solution for Precision Cosmology
,”
Mon. Not. R. Astron. Soc.
,
521
(
1
), pp.
1152
1161
.10.1093/mnras/stad638
9.
Natesan
,
P.
,
Nandakumar
,
R.
,
Minka
,
T.
, and
Rubright
,
J. D.
,
2016
, “
Bayesian Prior Choice in IRT Estimation Using MCMC and Variational Bayes
,”
Front. Psychol.
,
7
, p.
214660
.10.3389/fpsyg.2016.01422
10.
Aslam
,
T. D.
,
Price
,
M. A.
,
Ticknor
,
C.
,
Coe
,
J. D.
,
Leiding
,
J. A.
, and
Zocher
,
M. A.
,
2020
, “
AWSD Callibration for the HMX Based Explosive PBX 9501
,”
Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
, Portland, OR, June 16–21, p.
030001
.10.1063/12.0000891
11.
Marsh
,
P.
, and
Stanley
,
1980
,
LASL Shock Hugoniot Data
,
University of California Press
,
Berkeley, CA
.
12.
Gibbs
,
R.
,
Terry
., and
Popolato
,
A.
,
1980
,
LASL Explosive Property Data
,
University of California Press
,
Berkeley, CA
.
13.
Gustavsen
,
R. L.
,
Sheffield
,
S. A.
, and
Alcon
,
R. R.
,
1999
, “
Shock Initiation of New and Aged Pbx 9501 Measured With Embedded Electro- Magnetic Particle Velocity Gauges
,”
Los Alamos National Laboratory
,
Report No. LA-13634-MS.
14.
Dick
,
J. J.
,
Martinez
,
A. R.
, and
Hixson
,
R. S.
,
1998
, “
Plane Impact Response of PBX 9501 and Its Components Below 2 GPa
,”
Los Alamos National Laboratory
,
Los Alamos, NM
,
Report No. LA-13426-MS.
15.
Thompson
,
D. G.
,
Brown
,
G. W.
,
DeLuca
,
R.
,
Giambra
,
A. M.
, and
Sandstrom
,
M. M.
,
2009
, “
Thermal Expansion of PBX 9501 and PBX 9502 Plastic-Bonded Explosives
,”
Proceedings of the North American Thermal Analysis Society
,
Lubbock TX
, Sept. 22.https://www.osti.gov/servlets/purl/992178
16.
Menikoff
,
R.
,
2006
, “
Detonation Waves in PBX 9501
,”
Combust. Theory Modell.
,
10
(
6
), pp.
1003
1021
.10.1080/13647830600851754
17.
Ticknor
,
C.
,
Andrews
,
S. A.
, and
Leiding
,
J. A.
,
2020
, “
Magpie: A New Thermochemical Code
,”
Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
, Portland, OR, June 16–21, p.
030033
.10.1063/12.0000785
18.
Lyman
,
J. L.
,
Liau
,
Y.-C.
, and
Brand
,
H. V.
,
2002
, “
Thermochemical Functions for Gas-Phase, 1,3,5,7-Tetranitro-1,3,5,7-Tetraazacyclooctane (HMX), Its Condensed Phases, and Its Larger Reaction Products
,”
Combust. Flame
,
130
(
3
), pp.
185
203
.10.1016/S0010-2180(02)00364-4
19.
Andrews
,
S. A.
, and
Fraser
,
A. M.
,
2019
, “
Estimating Physics Models and Quantifying Their Uncertainty Using Optimization With a Bayesian Objective Functional
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
4
(
1
), p.
011002
.10.1115/1.4043807
20.
Kraft
,
D.
,
1994
, “
Algorithm 733: TOMP–Fortran Modules for Optimal Control Calculations
,”
ACM Trans. Math. Software
,
20
(
3
), pp.
262
281
.10.1145/192115.192124
21.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
22.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.10.1063/1.1699114
23.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
,
Dunson
,
D. B.
,
Vehtari
,
A.
, and
Rubin
,
D. B.
,
2013
,
Bayesian Data Analysis
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
24.
Phan
,
D.
,
Pradhan
,
N.
, and
Jankowiak
,
M.
,
2019
, “
Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro
,” arXiv:1912.11554.
25.
Bingham
,
E.
,
Chen
,
J. P.
,
Jankowiak
,
M.
,
Obermeyer
,
F.
,
Pradhan
,
N.
,
Karaletsos
,
T.
,
Singh
,
R.
,
Szerlip
,
P. A.
,
Horsfall
,
P.
, and
Goodman
,
N. D.
,
2019
, “
Pyro: Deep Universal Probabilistic Programming
,”
J. Mach. Learn. Res.
,
20
, pp.
28:1
28:6
.https://www.jmlr.org/papers/v20/18-403.html
26.
Andrews
,
S. A.
, and
Wilson
,
B. M.
,
2023
, “
Variational Bayesian Calibration of a PTW Material Strength Model of OFHC Copper
,” ASME Paper No. VVUQ2023-108829.10.1115/VVUQ2023-108829
27.
Hunter
,
J. D.
,
2007
, “
Matplotlib: A 2D Graphics Environment
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
90
95
.10.1109/MCSE.2007.55
28.
Harris
,
C. R.
,
Millman
,
K. J.
,
van der Walt
,
S. J.
,
Gommers
,
R.
,
Virtanen
,
P.
,
Cournapeau
,
D.
,
Wieser
,
E.
, et al.,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.10.1038/s41586-020-2649-2
You do not currently have access to this content.