Abstract

In an aero-engine compressor, co-rotating discs form cavities that interact with an axial throughflow of secondary air at low radius. In the high-pressure (HP) compressor the shroud is hotter than the throughflow (directed downstream to the turbine) and the radial temperature gradient creates buoyancy-induced flow at Grashof numbers 1013. Such flows can be unstable and typically take the form of counter-rotating vortex pairs separated by radial hot and cold plumes. However, in low pressure (LP) and intermediate pressure (IP) compressors the secondary air is directed upstream. In this inverse scenario, the axial throughflow is hotter than the compressor discs, reversing the disc temperature gradient and eliminating the fundamental driver for buoyancy. Despite its practical application and importance, this inverse scenario has not been previously investigated. The University of Bath Compressor Cavity Rig has been uniquely designed to simulate such flows, measuring temperature, and unsteady pressure in the frame of reference of the rotating discs. Bayesian and spectral analysis have determined the radial distribution of disc heat flux, as well as the asymmetry of the rotating vortex structures and their slip relative to the discs. Unexpectedly, the new data reveal the flow structure in cavities with positive and inverted temperature differences are fundamentally similar (albeit with reversed radial-temperature profiles). Isothermal cases identified a critical Rossby number (Ro), above which the flow structure in the cavity was dominated by a toroidal vortex. At subcritical Ro, the flow structure for the inverted temperature gradient continued to be governed by buoyancy due to disc heat transfer. Momentum exchange with the axial throughflow and the gradient of circumferential pressure combine to vary the slip and vortex symmetry. This paper provides the first data and analysis of flow and heat transfer during inverse throughflow conditions in LP and IP compressors. The new insights are of importance for the determination of the thermal stresses in discs, engine life, compressor blade clearance and efficiency.

References

1.
Kroes
,
M. J.
, and
Wild
,
T. W.
,
1995
,
Aircraft Powerplants
, 7th ed.,
McGraw-Hill Education
,
Singapore
. p.
394
.
2.
Rolls-Royce
,
2005
,
The Jet Engine
, 5th ed.,
Rolls-Royce plc
,
London, UK
.
3.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.
4.
Nicholas
,
T. E. W.
,
Pernak
,
M. J.
,
Lock
,
G. D.
,
Scobie
,
J. A.
, and
Tang
,
H.
,
2025
, “
Mass and Heat Exchange in Rotating Compressor Cavities With Variable Cob Separation
,”
ASME J. Eng. Gas Turbines Power
,
147
(
1
), p.
011018
.
5.
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1979
, “
Vortex Breakdown in a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
90
(
1
), pp.
109
127
.
6.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(
1
), pp.
237
246
.
7.
Andereck
,
C. D.
,
Liu
,
S. S.
, and
Swinney
,
H. L.
,
1986
, “
Flow Regimes in a Circular Couette System With Independently Rotating Cylinders
,”
J. Fluid Mech.
,
164
, pp.
155
183
.
8.
Jackson
,
R. W.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061004
.
9.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Analysis of Shroud and Disk Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091005
.
10.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2022
, “
Unsteady Pressure Measurements in a Heated Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041017
.
11.
Sun
,
Z.
,
Gao
,
F.
,
Chew
,
J. W.
, and
Amirante
,
D.
,
2022
, “
Large Eddy Simulation Investigation of Low Rossby Number Buoyant Flow in Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121023
.
12.
Gao
,
F.
, and
Chew
,
J. W.
,
2022
, “
Flow and Heat Transfer Mechanisms in a Rotating Compressor Cavity Under Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051010
.
13.
Long
,
C. A.
,
1994
, “
Disk Heat Transfer in a Rotating Cavity with an Axial Throughflow of Cooling Air
,”
Int. J. Heat Fluid Flow
,
15
(
4
), pp.
307
316
.
14.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2014
, “The Effects of Rotation and Mass Flow on Local Heat Transfer in Rotating Cavities With Axial Throughflow.”
ASME Paper GT2014-26228
.
15.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions”.
ASME Paper GT2014-27174
.
16.
Fazeli
,
S. M.
,
Kanjirakkad
,
V.
, and
Long
,
C.
,
2021
, “
Experimental and Computational Investigation of Flow Structure in Buoyancy-Dominated Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
7
(
143
), p.
071026
.
17.
Fisher
,
E. C.
, and
Puttock-Brown
,
M. R.
,
2024
, “
Experimental Measurements of Flow-Averaged Toroidal Vortices in Buoyancy-Dominated Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
146
(
4
), p.
041006
.
18.
Saini
,
D.
, and
Sandberg
,
R. D.
,
2021
, “
Large-Eddy Simulations of High Rossby Number Flow in the High-Pressure Compressor Inter-Disk Cavity
,”
ASME J. Turbomach.
,
143
(
11
), p.
111002
.
19.
Puttock-Brown
,
M. R.
,
Rose
,
M. G.
, and
Long
,
C. A.
,
2017
, “Experimental and Computational Investigation of Rayleigh-Bénard Flow in the Rotating Cavities of a Core Compressor”.
ASME Paper GT2017-64884
.
20.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Effect of an Axial Throughflow on Buoyancy-Induced Flow in a Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
80
(
12
), p.
108468
.
21.
Hickling
,
T.
, and
He
,
L.
,
2023
, “
LES-CHT for a Rotating Cavity With Axial Throughflow
,”
ASME J. Turbomach.
,
145
(
6
), p.
061006
.
22.
Bohn
,
D. E.
,
Deutsch
,
G. N.
,
Simon
,
B.
, and
Burkhardt
,
C.
,
2000
, “Flow Visualization in a Rotating Cavity With Axial Throughflow”.
ASME Paper 2000-GT-0280
.
23.
Pitz
,
D. B.
, and
Wolf
,
W. R.
,
2022
, “
Coriolis Force Effects on Radial Convection in a Cylindrical Annulus
,”
Int. J. Heat Mass Transf.
,
189
, p.
122650
.
24.
Pitz
,
D. B.
, and
Wolf
,
W. R.
,
2019
, “Direct Numerical Simulation of Radial Convection in a Cylindrical Annulus With and Without Rotation”. ASME-JSME-KSME Paper AJKFluids2019-5025 10.1115/AJKFluids 2019-5025.
25.
Hickling
,
T.
, and
He
,
L.
,
2021
, “
Some Observations on the Computational Sensitivity of Rotating Cavity Flows
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041014
.
26.
Parry
,
J.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Carnevale
,
M.
,
2024
, “
Conjugate Modelling of a Closed Co-Rotating Compressor Cavity
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051007
.
27.
Wang
,
R.
,
Gao
,
F.
,
Chew
,
J. W.
,
Marxen
,
O.
, and
Sun
,
Z.
,
2024
, “
Advanced Modelling of Flow and Heat Transfer in Rotating Disc Cavities Using Open-Source Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
146
(
6
), p.
061022
.
28.
Lock
,
G. D.
,
Jackson
,
R. W.
,
Pernak
,
M. J.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Tang
,
H.
, and
Scobie
,
J. A.
,
2023
, “
Stratified and Buoyancy-Induced Flow in Closed Compressor Rotors
,”
ASME J. Turbomach.
,
145
(
1
), p.
011008
.
29.
Pernak
,
M. J.
,
Nicholas
,
T. E. W.
,
Williams
,
J. T.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2023
, “
Experimental Investigation of Transient Flow Phenomena in Rotating Compressor Cavities
,”
ASME J. Turbomach.
,
145
(
12
), p.
121005
.
30.
Nicholas
,
T. E. W.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Tang
,
H.
,
2024
, “
A Model of Mass and Heat Transfer for Disc Temperature Prediction in Open Compressor Cavities
,”
ASME J. Turbomach.
,
146
(
4
), p.
041001
.
31.
Nicholas
,
T. E. W.
,
Pernak
,
M. J.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Tang
,
H.
,
2023
, “
Transient Heat Transfer and Temperatures in Closed Compressor Rotors
,”
Appl. Therm. Eng.
,
230
(Part B), p.
120759
.
32.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041030
.
33.
Pountney
,
O. J.
,
Patinios
,
M.
,
Tang
,
H.
,
Luberti
,
D.
,
Sangan
,
C. M.
,
Scobie
,
J. A.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Calibration of Thermopile Heat Flux Gauges Using a Physically-Based Equation
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
235
(
7
), pp.
1806
1816
.
34.
Tang
,
H.
, and
Owen
,
J. M.
,
2021
, “
Effect of Radiation on Heat Transfer Inside Aeroengine Compressor Rotors
,”
ASME J. Turbomach.
,
143
(
5
), p.
051005
.
35.
Tang
,
H.
,
Shardlow
,
T.
, and
Owen
,
J. M.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Disks
,”
ASME J. Turbomach.
,
137
(
12
), p.
121003
.
36.
Tang
,
H.
,
Puttock-Brown
,
M. R.
, and
Owen
,
J. M.
,
2018
, “
Buoyancy-Induced Flow and Heat Transfer in Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
071902
.
37.
Tang
,
H
, and
Owen
,
J. M.
,
2023
, “
Plume Model for Buoyancy-Induced Flow and Heat Transfer in Closed Rotating Cavities
,”
ASME J. Turbomach.
,
145
(
1
), p.
011005
.
You do not currently have access to this content.