Graphical Abstract Figure

Blade roughness and close-up view of grid resolution

Graphical Abstract Figure

Blade roughness and close-up view of grid resolution

Close modal

Abstract

This article presents a combined numerical and experimental study of the high-subsonic organic vapor flow in a linear turbine cascade. The profile geometry is the well-documented LS59 highly loaded rotor blade and the working fluid is Novec649, a dense gas used in organic Rankine cycles. Large eddy simulations are carried out with and without the roughness introduced by the additive manufacturing process. The results for the rough blade are in fair agreement with experiments, while the smooth surface induces a change in the vortex shedding regime. A detached shedding, characterized by a long recirculation downstream of the trailing edge and a base pressure plateau, is obtained in the experiments and by discretizing the roughness in the simulation. By contrast, a transonic vortex shedding is established when the surface is smooth: intense vortices roll up immediately after the trailing edge, yielding a short bubble and a lattice of shock waves. A strong pressure drop is observed at the trailing edge, resulting in high profile losses. In both cases, the boundary layer is turbulent ahead of the separation, but its thickness is significantly greater in the rough configuration, which may be the reason for the change of regime.

References

1.
aus der Wiesche
,
S.
,
2023
, “
Experimental Investigation Techniques for Non-Ideal Compressible Fluid Dynamic
,”
Int. J. Turbomach. Propul. Power
,
8
(
2
), p.
11
.
2.
Durá Galiana
,
F. J.
,
Wheeler
,
A. P. S.
, and
Ong
,
J.
,
2016
, “
A Study of Trailing-Edge Losses in Organic Rankine Cycle Turbines
,”
ASME J. Turbomach.
,
138
(
12
), p.
121003
.
3.
Baumgärtner
,
D.
,
Otter
,
J. J.
, and
Wheeler
,
A. P. S.
,
2020
, “
The Effect of Isentropic Exponent on Transonic Turbine Performance
,”
ASME J. Turbomach.
,
142
(
8
), p.
081007
.
4.
Manfredi
,
M.
,
Persico
,
G.
,
Spinelli
,
A.
,
Gaetani
,
P.
, and
Dossena
,
V.
,
2023
, “
Design and Commissioning of Experiments for Supersonic Orc Nozzles in Linear Cascade Configuration
,”
Appl. Therm. Eng.
,
224
(
4
), p.
119996
.
5.
Hake
,
L.
,
Reinker
,
F.
,
Wagner
,
R.
, and
Schatz
,
M.
,
2022
, “
The Profile Loss of Additive Manufactured Blades for Organic Rankine Cycle Turbines
,”
Int. J. Turbomach. Propul. Power
,
7
(
1
), p.
11
.
6.
Hake
,
L.
,
Sundermeier
,
S.
, and
aus der Wiesche
,
S.
,
2023
, “
Profile Loss Prediction for Organic Rankine Cycle Turbines: An Experimental Case Study
,”
Int. J. Turbomach. Propul. Power
,
8
(
4
), p.
51
.
7.
Hake
,
L.
,
Sundermeier
,
S.
,
aus der Wiesche
,
S.
,
Matar
,
C.
,
Cinnella
,
P.
, and
Gloerfelt
,
X.
,
2023
, “
Investigation of the Turbulence Level and the Vortex Shedding in a Turbine Cascade Working With an Organic Vapor at Subsonic Mach Numbers
,”
ORC2023 - 7th International Seminar on Organic Rankine Cycle Power Systems
,
Seville, Spain
,
Sept. 4–6
.
8.
Hake
,
L.
,
Sundermeier
,
S.
,
Passmann
,
M.
,
aus der Wiesche
,
S.
,
Bienner
,
A.
,
Gloerfelt
,
X.
, and
Cinnella
,
P.
,
2024
, “
Investigation of a Transonic Dense Gas Flow Over an Idealized Blade Vane Configuration
,”
ASME Turbo Expo 2024
,
London, UK
,
June 24–28
, Paper No. GT2024-127215.
9.
Cinnella
,
P.
, and
Gloerfelt
,
X.
,
2023
, “
Insights Into the Turbulent Flow of Dense Gases Through High-Fidelity Simulations
,”
Comput. Fluids
,
267
(
12
), p.
106067
.
10.
Hoarau
,
J.-C.
,
Cinnella
,
P.
, and
Gloerfelt
,
X.
,
2021
, “
Large Eddy Simulations of Strongly Non Ideal Compressible Flows Through a Transonic Cascade
,”
Energies
,
14
(
3
), pp.
772–1
772–20
, Open Access.
11.
Giauque
,
A.
,
Schuster
,
D.
, and
Corre
,
C.
,
2023
, “
High-Fidelity Numerical Investigation of a Real Gas Annular Cascade With Experimental Validation
,”
Phys. Fluids
,
35
(
12
), p.
126119
.
12.
Matar
,
C.
,
Gloerfelt
,
X.
, and
Cinnella
,
P.
,
2024
, “
High-Fidelity Prediction of Aerodynamic Losses Through a Supersonic Vane
,”
ASME Turbo Expo 2024
,
London, UK
,
June 24–28
, Paper No. GT2024-127676.
13.
Kiock
,
R.
,
Lehthaus
,
F.
,
Baines
,
N. C.
, and
Sieverding
,
C. H.
,
1986
, “
The Transonic Flow Through a Plane Turbine Cascade as Measured in Four European Wind Tunnels
,”
ASME J. Eng. Gas Turb. Power
,
108
(
2
), pp.
277
284
.
14.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
15.
Meynet
,
S.
,
Barge
,
A.
,
Moureau
,
V.
,
Balarac
,
G.
,
Lartigue
,
G.
, and
Hadjadj
,
A.
,
2023
, “
Roughness-Resolved Large-Eddy Simulation of Additive Manufacturing-Like Channel Flows
,”
ASME J. Turbomach.
,
145
(
8
), p.
081013
.
16.
Jelly
,
T. O.
,
Nardini
,
M.
,
Rosenzweig
,
M.
,
Leggett
,
J.
,
Marusic
,
I.
, and
Sandberg
,
R. D.
,
2023
, “
High-Fidelity Computational Study of Roughness Effects on High Pressure Turbine Performance and Heat Transfer
,”
Int. J. Heat Fluid Flow
,
101
(
6
), p.
109134
.
17.
Nardini
,
M.
,
Kozul
,
M.
,
Jelly
,
T. O.
, and
Sandberg
,
R. D.
,
2024
, “
Direct Numerical Simulation of Transitional and Turbulent Flows Over Multi-Scale Surface Roughness—Part II: The Effect of Roughness on the Performance of a High-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
146
(
3
), p.
031009
.
18.
Busse
,
A.
,
Lützner
,
M.
, and
Sandham
,
N. D.
,
2015
, “
Direct Numerical Simulation of Turbulent Flow Over Rough Surface Based on a Surface Scan
,”
Comput. Fluids
,
116
(
8
), pp.
129
147
.
19.
Reinker
,
F.
,
Hasselmann
,
K.
,
aus der Wiesche
,
S.
, and
Kenig
,
E. Y.
,
2016
, “
Thermodynamics and Fluid Mechanics of a Closed Blade Cascade Wind Tunnel for Organic Vapors
,”
ASME J. Eng. Gas Turb. Power
,
138
(
5
), p.
052601
.
20.
Sieverding
,
C. H.
,
1972
,
Transonic Flows in Turbomachinery
, Vol.
59
,
von Karman Institute
,
Rhode-Saint-Genese, Belgium
.
21.
Sanz
,
W.
,
Gehrer
,
A.
,
Woisetschläger
,
J.
,
Forstner
,
M.
,
Artner
,
W.
, and
Jericha
,
H.
,
1998
, “
Numerical and Experimental Investigation of the Wake Flow Downstream of a Linear Turbine Cascade
,”
ASME International Gas Turbine and Aeroengine Congress
,
Stockholm, Sweden
,
June 2–5
, Paper No. 98-GT-246.
22.
Hake
,
L.
,
aus der Wiesche
,
S.
,
Sundermeier
,
S.
,
Cakievski
,
L.
,
Bäumer
,
J.
,
Cinnella
,
P.
,
Matar
,
C.
, and
Gloerfelt
,
X.
,
2023
, “
Hot-Wire Anemometry in High Subsonic Organic Vapor Flows
,”
ASME J. Turbomach.
,
145
(
9
), p.
091010
.
23.
Reinker
,
F.
and
aus der Wiesche
,
S.
,
2020
, “
Application of Hot-Wire Anemometry in the High Subsonic Organic Vapor Flow Regime
,” 3rd International Seminar on Non-Ideal Compressible-Fluid Dynamics for Propulsion & Power (NICFD2020), Delfs, Netherlands, Oct. 29–30, pp.
1
6
.
24.
Gehrer
,
A.
,
Lang
,
H.
,
Mayrhofer
,
N.
, and
Woisetschläger
,
J.
,
2000
, “
Numerical and Experimental Investigation of Trailing Edge Vortex Shedding Downstream of a Linear Turbine Cascade
,”
ASME International Gas Turbine and Aeroengine Congress
,
Munich, Germany
,
May 8–11
.
25.
Gloerfelt
,
X.
, and
Cinnella
,
P.
,
2019
, “
Large Eddy Simulation Requirements for the Flow Over Periodic Hills
,”
Flow Turbul. Combust.
,
103
(
1
), pp.
55
91
.
26.
Gloerfelt
,
X.
,
Bienner
,
A.
, and
Cinnella
,
P.
,
2023
, “
High-Subsonic Boundary-layer Flows of an Organic Vapour
,”
J. Fluid Mech.
,
971
(
9
), p.
A8
.
27.
Bienner
,
A.
,
Gloerfelt
,
X.
,
Yalçın
,
Ö.
, and
Cinnella
,
P.
,
2024
, “
Multiblock Parallel High-Order Implicit Residual Smoothing Time Scheme for Compressible Navier-Stokes Equations
,”
Comput. Fluids
,
269
(
1
), p.
106138
.
28.
Stryjek
,
R.
, and
Vera
,
J. H.
,
1986
, “
PRSV: An Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures
,”
Can. J. Chem. Eng.
,
64
(
2
), pp.
323
333
.
29.
Chung
,
T. H.
,
Ajlan
,
M.
,
Lee
,
L. L.
, and
Starling
,
K. E.
,
1988
, “
Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties
,”
Ind. Eng. Chem. Res.
,
27
(
4
), pp.
671
679
.
30.
Bienner
,
A.
,
Gloerfelt
,
X.
, and
Cinnella
,
P.
,
2024
, “
Leading-Edge Effects on Freestream Turbulence Induced Transition of an Organic Vapor
,”
Flow Turbul. Combust.
,
112
(
1
), pp.
345
373
.
31.
Gloerfelt
,
X.
, and
Cinnella
,
P.
,
2024
, “
High-Fidelity Investigation of Vortex Shedding From a Highly-Loaded Turbine Blade
,”
ASME Turbo Expo 2024
,
London, UK
,
June 24–28
.
32.
Kadivar
,
M.
,
Tormey
,
D.
, and
McGranaghan
,
G.
,
2021
, “
A Review on Turbulent Flow Over Rough Surfaces: Fundamentals and Theories
,”
Int. J. Thermofluids
,
10
(
5
), p.
100077
.
33.
Melzer
,
A. P.
, and
Pullan
,
G.
,
2019
, “
The Role of Vortex Shedding in the Trailing Edge Loss of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
141
(
4
), p.
041001
.
34.
Rossiter
,
A. D.
,
Pullan
,
G.
, and
Melzer
,
A. P.
,
2023
, “
The Influence of Boundary Layer State and Trailing Edge Wedge Angle on the Aerodynamic Performance of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
145
(
4
), p.
041008
.
35.
Sieverding
,
C. H.
,
Richard
,
H.
, and
Desse
,
J.
,
2003
, “
Turbine Blade Trailing Edge Flow Characteristics at High Subsonic Outlet Mach Number
,”
ASME J. Turbomach.
,
125
(
2
), pp.
298
309
.
36.
Sieverding
,
C. H.
, and
Manna
,
M.
,
2020
, “
A Review on Turbine Trailing Edge Flow
,”
Int. J. Turbomach. Propul. Power
,
5
(
10
), pp.
1
60
.
37.
Bacci
,
T.
,
Picchi
,
A.
,
Lenzi
,
T.
,
Facchini
,
B.
, and
Innocenti
,
L.
,
2021
, “
Effect of Surface Roughness and Inlet Turbulence Intensity on a Turbine Nozzle Guide Vane External Heat Transfer: Experimental Investigation on a Literature Test Case
,”
ASME J. Turbomach.
,
143
(
4
), p.
041006
.
38.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
39.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Wittig
,
S.
,
2009
, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer—Part I: Model Formulations
,”
ASME J. Turbomach.
,
131
(
3
), p.
031016
.
40.
Wei
,
L.
,
Ge
,
X.
,
George
,
J.
, and
Durbin
,
P.
,
2017
, “
Modeling of Laminar-Turbulent Transition in Boundary Layers and Rough Turbine Blades
,”
ASME J. Turbomach.
,
139
(
11
), p.
111009
.
41.
McClain
,
S. T.
,
Hanson
,
D. R.
,
Cinnamon
,
E.
,
Snyder
,
J. C.
,
Kunz
,
R. F.
, and
Thole
,
K. A.
,
2021
, “
Flow in a Simulated Turbine Blade Cooling Channel With Spatially Varying Roughness Caused by Additive Manufacturing Orientation
,”
ASME J. Turbomach.
,
143
(
7
), p.
071013
.
42.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.
43.
Thakkar
,
M.
,
Busse
,
A.
, and
Sandham
,
N. D.
,
2017
, “
Surface Correlations of Hydrodynamic Drag for Transitionally Rough Engineering Surfaces
,”
J. Turbulence
,
18
(
2
), pp.
138
169
.
44.
Bellucci
,
J.
,
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Arcangeli
,
L.
,
Maceli
,
N.
, and
Dossena
,
V.
,
2015
, “
The Influence of Roughness on a High-Pressure Steam Turbine Stage: An Experimental and Numerical Study
,”
ASME J. Eng. Gas Turb. Power
,
137
(
1
), p.
012602
.
45.
Boyle
,
R. J.
, and
Senyitko
,
R. G.
,
2003
, “
Measurements and Predictions of Surface Roughness Effects on the Turbine Vane Aerodynamics
,”
Proceedings of ASME Turbo Expo 2003
,
Atlanta, GA
,
June 16–19
, pp.
291
303
.
46.
Back
,
S. C.
,
Hobson
,
G. V.
,
Song
,
S. J.
, and
Millsaps
,
K. T.
,
2012
, “
Effects of Reynolds Number and Surface Roughness Magnitude and Location on Compressor Cascade Performance
,”
ASME J. Turbomach.
,
134
(
5
), p.
051013
.
47.
Malathi
,
A. S.
,
Nardini
,
M.
,
Vaid
,
A.
,
Vadlamani
,
N. R.
, and
Sandberg
,
R. D.
,
2023
, “
Profile Loss Reduction of High-Lift Turbine Blades With Rough and Ribbed Surfaces
,”
ASME J. Turbomach.
,
145
(
2
), p.
021001
.
48.
Bammert
,
K.
, and
Sandstede
,
H.
,
1976
, “
Influences of Manufacturing Tolerances and Surface Roughness of Blades on the Performance of Turbines
,”
ASME J. Eng. Power.
,
98
(
1
), pp.
29
36
.
You do not currently have access to this content.