Abstract

In this paper, steady and unsteady computational fluid dynamics (CFD) have been used to investigate stall inception for a modern low-pressure-ratio transonic fan. The computational results are validated against measurement data from a high-speed test facility. CFD validation was approached as a blind test case. The results show good agreement between the experiments and computations. Stall is triggered by the growth of a suction surface separation behind the shock around the mid-span of the rotor blade. As the fan is throttled, the separation grows, leading to increased blockage in the blade passages. At the point of instability, the separation grows further, locally increasing incidence and leading to the formation of a stall cell. It is shown that changes to the tip leakage flow leave the stall inception mechanism unaffected. A computational case with a suction surface slip patch between 25% and 75% span shows that the reduction in blockage around the mid-span increases the stall margin by 25%. This demonstrates that for cases with mid-span initiated stalls, it is important to consider the flow away from the tip as well as the flow in the tip region. A redesigned fan is used to illustrate that design changes around the mid-span can be effective in improving flow range. The redesigned fan increases the stall margin by 6.7% while maintaining the design point efficiency within 0.1%.

References

1.
Cumpsty
,
N.
, and
Heyes
,
A.
,
2015
,
Jet Propulsion: A Simple Guide to the Aerodynamics and Thermodynamic Design and Performance of Jet Engines
, 3rd ed.,
Cambridge Universtiy Press
,
Cambridge
.
2.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME. J. Turbomach.
,
138
(
1
), p.
011001
.
3.
Adamczyk
,
J. J.
,
Celestina
,
M. L.
, and
Greitzer
,
E. M.
,
1993
, “
The Role of Tip Clearance in High-Speed Fan Stall
,”
ASME J. Turbomach.
,
115
(
1
), pp.
28
38
.
4.
Suder
,
K. L.
, and
Celestina
,
M. L.
,
1996
, “
Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
118
(
2
), pp.
218
229
.
5.
Denton
,
J.
, and
Xu
,
L.
,
1999
, “
The Exploitation of Three-Dimensional Flow in Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C
,
213
(
2
), pp.
125
137
.
6.
Denton
,
J. D.
, and
Xu
,
L.
,
2002
, “
The Effects of Lean and Sweep on Transonic Fan Performance
,”
Proceedings of the ASME TurboExpo 2002: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2002, Parts A and B
,
Amsterdam, The Netherlands
,
June 3–6
, ASME, pp.
23
32
.
7.
Hah
,
C.
,
Rabe
,
D. C.
, and
Wadia
,
A. R.
,
2004
, “
Role of Tip-Leakage Vortices and Passage Shock in Stall Inception in a Swept Transonic Compressor Rotor
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2004, Parts A and B
,
Vienna, Austria
,
June 14–17
, ASME, pp.
545
555
.
8.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
9.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME. J. Turbomach.
,
120
(
2
), pp.
393
401
.
10.
Pullan
,
G.
,
Young
,
A.
,
Day
,
I.
,
Greitzer
,
E.
, and
Spakovszky
,
Z.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
11.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S. D.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2019
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME J. Turbomach.
,
141
(
6
), p.
061010
.
12.
Kim
,
S.
,
Pullan
,
G.
,
Hall
,
C.
,
Grewe
,
R.
,
Wilson
,
M.
, and
Gunn
,
E.
,
2019
, “
Stall Inception in Low Pressure Ratio Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071005
.
13.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2004
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.
14.
Choi
,
M.
, and
Vahdati
,
M.
,
2011
, “
Numerical Strategies for Capturing Rotating Stall in Fan
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
5
), pp.
655
664
.
15.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart–Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
16.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan—Part I: Modification of Spalart–Allmaras Turbulence Model
,”
ASME J. Turbomach.
,
140
(
5
), p.
051008
.
17.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
.
18.
Numeca Autogrid
. https://www.numeca.de/en/products-meshing-solutions/, Accessed August 22 2016.
19.
Cumpsty
,
N.
,
2004
,
Compressor Aerodynamics
, 2nd ed.,
Krieger Publishing Company
,
Malabar, FL
.
20.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
,
1999
, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
,
121
(
3
), pp.
499
509
.
21.
Delery
,
J.
,
2001
, “
Robert Legendre and Henri Werlé: Toward the Elucidation of Three-Dimensional Separation
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), p.
129
154
.
22.
Emmons
,
H.W
,
Pearson
,
C.E.
, and
Grant
,
H.P.
,
1955
, “
Compressor Surge and Stall
,”
Trans. ASME
,
77
(
4
), pp.
455
467
.
You do not currently have access to this content.