Abstract

The complex surface morphology and multiscale surface features inherent in additively manufactured (AM) components contribute to the overall flow characteristics and heat transfer of cooling passages. As the AM process and cooling data in the literature continue to evolve, so does the need for more accurate heat transfer and pressure loss correlations for AM cooling schemes. This study improves the predictability of pressure loss and heat transfer for AM cooling passages by fabricating a range of coupons and investigating samples in the literature. Twenty-seven test coupons were manufactured using direct metal laser sintering in an assortment of build directions and build locations that produced a variety of surface morphologies. Nondestructive evaluation, computed tomography scanning, was used to quantify the surface morphology as well as capture the as-built geometric dimensions of the cooling schemes. The friction factor and bulk Nusselt number of the coupons were measured using an experimental rig. Pressure loss and heat transfer correlations in the literature were compared with the experimental results from the current coupons and datasets from the literature. Arithmetic mean roughness correlations in the literature struggled to predict the cooling performance of AM channels since the bulk roughness statistic did not capture the overall form of the surface morphology. A combination of root mean square roughness and skewness of the roughness was able to best predict pressure loss and heat transfer for the present samples and those in the literature while being independent of build location, build direction, material, machine, and laser parameters. The maximum absolute error was 25% and the average absolute error was 12% for the friction factor correlation. The maximum absolute error was 39% and the average absolute error was 8% for the Nusselt Number correlation.

References

1.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transfer
,
75
, pp.
58
74
.
2.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.
3.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D. J.
,
2015
, “
Build Direction Effects on Microchannel Tolerance and Surface Roughness
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111411
.
4.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Tailoring Surface Roughness Using Additive Manufacturing to Improve Internal Cooling
,”
ASME J. Turbomach.
,
142
(
7
), p.
071004
.
5.
Yeung
,
H.
,
Lane
,
B.
, and
Fox
,
J.
,
2019
, “
Part Geometry and Conduction-Based Laser Power Control for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
30
, p.
100844
.
6.
Kleszczynski
,
S.
,
Ladewig
,
A.
,
Friedberger
,
K.
,
zur Jacobsmuhlen
,
J.
,
Merhof
,
D.
, and
Witt
,
G.
,
2015
, “
Position Dependency of Surface Roughness in Parts From Laser Beam
,”
Proceedings of the 2015 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 10–12
, pp.
360
370
.
7.
Subramanian
,
R.
,
Rule
,
D.
, and
Nazik
,
O.
,
2021
, “
Dependence of LPBF Surface Roughness on Laser Incidence Angle and Component Build Orientation
,”
ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition
,
Virtual, Online
.
8.
Wang
,
P.
,
Yang
,
M.
,
Wang
,
Z.
, and
Zhang
,
Y.
,
2014
, “
A New Heat Transfer Correlation for Turbulent Flow of Air With Variable Properties in Noncircular Ducts
,”
ASME J. Heat Transfer
,
136
(
10
), p.
101701
.
9.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Effect of Additive Manufacturing Process Parameters on Turbine Cooling
,”
ASME J. Turbomach.
,
142
(
5
), p.
051007
.
10.
Kandlikar
,
S. G.
,
Schmitt
,
D.
,
Carrano
,
A. L.
, and
Taylor
,
J. B.
,
2005
, “
Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels
,”
Phys. Fluids
,
17
(
10
), p.
100606
.
11.
Nikuradse
,
J.
,
1950
, “
Laws of Flow in Rough Pipes
,”
J. Appl. Phys.
,
3
(
Nov.
), p.
399
.
12.
Mazzei
,
L.
,
Da Soghe
,
R.
, and
Bianchini
,
C.
,
2022
, “
Calibration of a CFD Methodology for the Simulation of Additively Manufactured Components Accounting for the Effects of Diameter and Printing Direction on Friction and Heat Transfer
,”
ASME J. Turbomach.
,
144
(
8
).
13.
Thole
,
K. A.
,
Lynch
,
S.
, and
Wildgoose
,
A. J.
,
2021
, “
Review of Advances in Convective Heat Transfer Developed Through Additive Manufacturing
,”
Adv. Heat Transfer
,
53
, pp.
249
325
.
14.
Zhou
,
L.
,
Zhu
,
Y.
,
Liu
,
H.
,
He
,
T.
,
Zhang
,
C.
, and
Yang
,
H.
,
2021
, “
A Comprehensive Model to Predict Friction Factors of Fluid Channels Fabricated Using Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
47
, p.
102212
.
15.
Goodhand
,
M. N.
,
Walton
,
K.
,
Blunt
,
L.
,
Lung
,
H. W.
,
Miller
,
R. J.
, and
Marsden
,
R.
,
2016
, “
The Limitations of Using ‘Ra’ to Describe Surface Roughness
,”
ASME J. Turbomach.
,
138
(
10
), p.
101003
.
16.
Van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
,
2002
, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
671
677
.
17.
Forooghi
,
P.
,
Stroh
,
A.
,
Magagnato
,
F.
,
Jakirlić
,
S.
, and
Frohnapfel
,
B.
,
2017
, “
Toward a Universal Roughness Correlation
,”
ASME J. Fluids Eng.
,
139
(
12
), p.
121201
.
18.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.
19.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
,
28
(
3
), pp.
554
556
.
20.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
21.
Mazzei
,
L.
,
Da Soghe
,
R.
, and
Bianchini
,
C.
,
2022
, “
Calibration of a Computational Fluid Dynamics Methodology for the Simulation of Roughness Effects on Friction and Heat Transfer in Additive Manufactured Components
,”
ASME J. Turbomach.
,
144
(
8
), p.
081002
.
22.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
.
23.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Sanders
,
P.
, and
Wang
,
L.
,
2021
, “
Impact of Additive Manufacturing on Internal Cooling Channels With Varying Diameters and Build Directions
,”
ASME J. Turbomach.
,
143
(
7
), p.
071003
.
24.
Wildgoose
,
A. J.
, and
Thole
,
K. A.
,
2023
, “
Heat Transfer and Pressure Loss of Additively Manufactured Internal Cooling Channels With Various Shapes
,”
ASME J. Turbomach.
,
145
(
7
), p.
071011
.
25.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Subramanian
,
R.
,
Kerating
,
L.
, and
Kulkarni
,
A.
,
2023
, “
Impacts of the Additive Manufacturing Process on the Roughness of Engine Scale Vanes and Cooling Channels
,”
ASME J. Turbomach.
,
145
(
4
), p.
041013
.
26.
Kamat
,
A. M.
, and
Pei
,
Y.
,
2019
, “
An Analytical Method to Predict and Compensate for Residual Stress-Induced Deformation in Overhanging Regions of Internal Channels Fabricated Using Powder Bed Fusion
,”
Addit. Manuf.
,
29
, p.
100796
.
27.
Segersäll
,
M.
,
2013
,
Nickel-Based Single-Crystal Superalloys—The Crystal Orientation Influence on High Temperature Properties
, Vol.
1568
,
Linköping Studies in Science and Technology Licentiate Thesis
.
28.
Volume Graphics
,
2021
, VGStudio MAX.
29.
Reinhart
,
C.
,
2011
,
Industrial CT & Precision
,
Volume Graphics GmbH
,
Heidelberg, Germany
.
30.
Wildgoose
,
A. J.
, and
Thole
,
K. A.
,
2022
, “
Variability in Additively Manufactured Turbine Cooling Features
,”
J. Glob. Power Propuls. Soc.
31.
Klingaa
,
C. G.
,
Bjerre
,
M. K.
,
Baier
,
S.
,
De Chiffre
,
L.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2019
, “
Roughness Investigation of SLM Manufactured Conformal Cooling Channels Using X-Ray Computed Tomography
,”
Proceedings of the 9th Conference on Industrial Computer Tomography
,
Padova, Italy
,
Feb. 13–15
.
32.
Munson
,
R.
,
Young
,
B.
,
and Okiishi
,
D. F.
, and
H
,
T.
,
1990
,
Fundamentals of Fluid Mechanics
,
Wiley & Sons
,
Hoboken, NJ
.
33.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2005
,
Theory and Design for Mechanical Measurments
,
Wiley & Sons
,
Hoboken, NJ
.
34.
Molitor
,
V. D.
,
2018
,
Experimental Study on Pressure Losses in Additive Manufactured Channels
,
RWTH
,
Aachen
.
35.
Nambisan
,
J.
,
2020
, “
Experimental Study on Pressure Losses in Additively Manufactured and Machined Orifices
,” Master's Thesis,
Linköping University
,
Linköping, Sweden
.
You do not currently have access to this content.