Abstract

The damage due to particulate matter ingestion by propulsion gas turbine engines can be significant, impacting the operability and performance of plant components. Here, we focus on the axial compressor whose blades become damaged when operated in dusty/sandy environments, resulting in significant performance degradation. In this work, CFD studies are performed to model the effects of airfoil damage on the first-stage rotor blading of a GE T700–401C compressor. We use thermoplastic additive manufacturing to construct representative physical models of three damage morphologies—ballistically bent/curved leading edges, cragged erosion of leading edges, and eroded leading/tailing edges at outer span locations. The resultant damaged plastic geometries, and a baseline undamaged configuration are then optically scanned and incorporated into sublayer resolved full stage, unsteady RANS analyses. Boundary conditions are imposed that conform to damaged compressor operation protocols, and this iterative process for accommodating corrected mass flow and off-design powering is presented. The results for the three damaged and one undamaged configuration are studied in terms of compressible wave field and secondary/tip flows, spanwise performance parameter distributions and efficiency. A method to estimate the effect of rotor damage on engine SFC is presented. The code, modeling, and meshing strategies pursued here are consistent with a validation study carried out for NASA Rotor 37 — these results are briefly included, and provide confidence in the predictions of the T700 geometry studied. The results provide quantitative comparisons of, and insight into, the physical mechanisms associated with damaged compressor performance degradation.

References

1.
El-Sayed
,
A.
,
2017
,
Aircraft Propulsion and Gas Turbine Engines
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, pp.
927
1057
.
2.
Neilson
,
J.
, and
Gilchrist
,
A.
,
1968
, “
Erosion by a Stream of Solid Particles
,”
Wear
,
11
(
2
), pp.
111
122
.
3.
Balan
,
C.
, and
Tabakoff
,
W.
,
1984
, “
Axial Flow Compressor Performance Deterioration
,”
20th Joint Propulsion Conference
,
Cincinnati, OH
,
June 11–13
, p.
1280
.
4.
Tabakoff
,
W.
,
Lakshminarasimha
,
A. N.
, and
Pasin
,
M.
,
1990
, “
Simulation of Compressor Performance Deterioration Due to Erosion
,”
ASME J. Turbomach.
,
112
(
1
), pp.
78
83
.
5.
Sallee
,
G.
,
1978
, “
Performance Deterioration Based on Existing (Historical) Data: JT9D Jet Engine Diagnostics Program
,” Technical Report NASA-CR-135448,
NASA
.
6.
Ghenaiet
,
A.
,
Tan
,
S. C.
, and
Elder
,
R. L.
,
2004
, “
Experimental Investigation of Axial Fan Erosion and Performance Degradation
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
218
(
6
), pp.
437
450
.
7.
Batcho
,
P. F.
,
Moller
,
J. C.
,
Padova
,
C.
, and
Dunn
,
M. G.
,
1987
, “
Interpretation of Gas Turbine Response Due to Dust Ingestion
,”
ASME J. Eng. Gas. Turbines Power.
,
109
(
3
), pp.
344
352
.
8.
Li
,
Y.
, and
Sayma
,
A.
,
2012
, “
Effects of Blade Damage on the Performance of a Transonic Axial Compressor Rotor
,”
Turbo Expo: Power for Land, Sea, and Air
,
Copenhagen, Denmark
,
June 11–15
, Vol.
8
, pp.
2427
2437
.
9.
Fedechkin
,
K. S.
,
Kuzmin
,
M. V.
, and
Marchukov
,
E. U.
,
2020
, “
The Design Analysis of the Damaged Compressor Blade Impact on the Aerodynamic Parameters
,”
Turbo Expo: Power for Land, Sea, and Air
,
Virtual, Online
,
Sept. 21–25
, Vol.
2A
.
10.
Suzuki
,
M.
, and
Yamamoto
,
M.
,
2011
, “
Numerical Simulation of Sand Erosion Phenomena in a Single-Stage Axial Compressor
,”
J. Fluid Sci. Technol.
,
6
(
1
), pp.
98
113
.
11.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.
12.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2009
, “
CFD Simulation of Fouling on Axial Compressor Stages
,”
Turbo Expo: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, Vol.
5
, pp.
331
342
.
13.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.
14.
Syverud
,
E.
, and
Bakken
,
L. E.
,
2006
, “
The Impact of Surface Roughness on Axial Compressor Performance Deterioration
,”
Turbo Expo: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, Vol.
5
, pp.
491
501
.
15.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.
16.
Walton
,
K.
,
Blunt
,
L.
,
Fleming
,
L.
,
Goodhand
,
M.
, and
Lung
,
H.
,
2014
, “
Areal Parametric Characterisation of Ex-service Compressor Blade Leading Edges
,”
Wear
,
321
, pp.
79
86
.
17.
GE Aviation
. “
T700-401C/-701C Turboshaft Engines Data Sheet
.” www.ge.com/aviation
18.
Dassault Systèmes
. “
SolidWorks 2020 Essentials
.” https://www.solidworks.com/sw/support
19.
Aust
,
J.
, and
Pons
,
D.
,
2019
, “
Taxonomy of Gas Turbine Blade Defects
,”
Aerospace
,
6
(
5
), p.
58
.
20.
Zuniga
,
V.
, and
Osvaldo
,
M.
,
2007
, “
Analysis of Gas Turbine Compressor Fouling and Washing on Line
,” Ph.D. thesis,
Cranfield University
,
Cranfield, UK
. http://hdl.handle.net/1826/2448
21.
Chirayath
,
E.
,
2023
, “
CFD Modeling of Particle Ingestion Damage and Its Impact on Multistage Axial Compressor Performance
,” Ph.D. thesis,
Pennsylvania State University
,
State College, PA
.
22.
Siemens
, “
STAR-CCM+ v2021.1
,” User Manual.
23.
Pointwise, Inc.
, “
Pointwise V18.2 R2, User Manual
.”
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
25.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ration of 1.82
,” Technical Report NASA-TP-1338,
NASA
.
26.
Suder
,
K. L.
,
1996
, “
Experimental Investigation of the Flow Field in a Transonic, Axial Flow Compressor With Respect to the Development of Blockage and Loss
,” Technical Report NASA-TM-107310,
NASA
.
27.
Ameri
,
Ali
,
2009
, “
NASA Rotor 37 CFD Code Validation Using Glenn-HT Code
,” Technical Report NASA/CR-2010-216235,
NASA
.
28.
Bruna
,
D.
, and
Turner
,
M. G.
,
2013
, “
Isothermal Boundary Condition at Casing Applied to the Rotor 37 Transonic Axial Flow Compressor
,”
ASME J. Turbomach.
,
135
(
3
), p.
034501
.
29.
Shabbir
,
A.
,
Celestina
,
M. L.
,
Adamczyk
,
J. J.
, and
Strazisar
,
A. J.
,
1997
, “
The Effect of Hub Leakage Flow on Two High Speed Axial Flow Compressor Rotors
,”
Turbo Expo: Power for Land, Sea, and Air
,
Orlando, FL
,
June 2–5
, Vol.
1
, p.
V02AT32A071
.
30.
Denton
,
J. D.
,
1997
, “
Lessons From Rotor 37
,”
J. Thermal Sci.
,
6
(
1
), pp.
1
13
.
31.
Yamada
,
K.
,
Furukawa
,
M.
,
Nakano
,
T.
,
Inoue
,
M.
, and
Funazaki
,
K.
,
2004
, “
Unsteady Three-Dimensional Flow Phenomena Due to Breakdown of Tip Leakage Vortex in a Transonic Axial Compressor Rotor
,”
Turbo Expo: Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
, Vol.
5
, pp.
515
526
.
32.
Hill
,
P. G.
, and
Peterson
,
C. R.
,
1992
,
Mechanics and Thermodynamics of Propulsion
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
33.
Cutawaycreations
,
2018
, “
GE Black Hawk T700 Engine
,” Retrieved from https://youtu.be/-Ox1wMXBo-A
You do not currently have access to this content.