Abstract

Aircraft intermittent combustion engines often incorporate turbochargers adapted from ground-based applications to improve their efficiency and performance. These turbochargers can operate at off-design conditions and experience blade failures brought on by aerodynamic-induced blade resonances. A reduced-order model of the aeroelastic response of general fluid–structural configurations is developed using the Euler–Lagrange equation informed by numerical data from uncoupled computational fluid dynamic (CFD) and computational structural dynamic calculations. The structural response is derived from a method of assumed-modes approach. The unsteady fluid response is described by a modified version of piston theory that approximates the local transient pressure fluctuation in conjunction with steady CFD solution data. The reduced-order model is first applied to a classical panel flutter scenario and found to predict a flutter boundary that compares favorably to the boundary identified by existing theory and experimental data. The model is then applied to the high-pressure turbine of a dual-stage turbocharger. The model predictions are shown to reliably determine the lack of turbine blade flutter and rudimentary damping comparisons are performed to assess the ability of the model to ascertain the susceptibility of the turbine to forced response. Obstacles associated with the current experimental state of the art that impinge upon further numerical validation are discussed.

References

1.
McGowan
,
R. C.
,
Pieri
,
J. J.
,
Szedlmayer
,
M. T.
,
Kim
,
K.
,
Clerkin
,
P. J.
,
Kruger
,
K. M.
,
Gondol
,
D.
, et al.,
2019
, “
Experimental Vibration Analysis of an Aircraft Diesel Engine Turbocharger
,” AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, Aug. 19–22,
American Institute of Aeronautics and Astronautics
, pp.
4008
4025
.
2.
McGowan
,
R. C.
,
Murugan
,
M.
,
Szedlmayer
,
M. T.
,
Kim
,
K. S.
,
Kruger
,
K. M.
,
Gondol
,
D. J.
,
Kweon
,
C.-B. M.
, et al.,
2019
, “
Structural Dynamics and Aeroelasticity of Airborne Diesel Engine Turbochargers
,”
Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
,
American Society of Mechanical Engineers
, p. V008T26A024.
3.
Mansouri
,
H.
, and
Ommi
,
F.
,
2019
, “
Performance Prediction of Aircraft Gasoline Turbocharged Engine at High-Altitudes
,”
Appl. Therm. Eng.
,
156
, pp.
587
596
.
4.
Bents
,
D. J.
,
Mockler
,
T.
,
Maldonado
,
J.
, and
Schmitz
,
P. C.
,
1998
, “
Propulsion System for Very High Altitude Subsonic Unmanned Aircraft
,”
SAE Trans.
,
107
, pp.
100
115
.
5.
Rozenkranc
,
M.
, and
Ernst
,
J.
,
2003
, “
Tactical UAV Engines Integration in IAI
,”
2nd AIAA ‘Unmanned Unlimited’ Conference and Workshop & Exhibit
,
San Diego, CA
,
Sept. 15–18
,
American Institute of Aeronautics and Astronautics
, pp.
6534
6543
.
6.
Luongo
,
A.
,
Nuccio
,
P.
, and
Vignoli
,
M.
,
2006
, “
Optimization of a Light Aircraft Spark-Ignition Engine
,” Tech. Rep., SAE Technical Paper No. 2006-01-2420.
7.
Fellows
,
D. W.
,
Bodony
,
D. J.
, and
McGowan
,
R. C.
,
2021
, “
Reduced-Order Modeling of Extreme Speed Turbochargers
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 84997
,
Virtual, Online
,
June 7–11
,
American Society of Mechanical Engineers
, p.V006T19A002.
8.
Dang
,
K.
,
Wiersma
,
H.
,
Meininger
,
R.
,
Gibson
,
J.
,
Kim
,
K.
, and
Szedlmayer
,
M.
,
2018
, “
High Cycle Fatigue Assessment of a Diesel Engine Turbocharger
,” AHS International 74th Annual Forum & Technology Display, Phoenix, AZ, May 14–17,
American Helicopter Society
.
9.
Hodges
,
D. H.
, and
Pierce
,
G. A.
,
2011
,
Introduction to Structural Dynamics and Aeroelasticity
, Vol. 15,
Cambridge University Press
,
New York
.
10.
Lubomski
,
J. F.
,
1980
, “
Status of NASA Full-Scale Engine Aeroelasticity Research
,” Tech. Rep., NASA Technical Memorandum 81500.
11.
Vogt
,
D.
,
2005
, “
Experimental Investigation of Three-Dimensional Mechanisms in Low Pressure Turbine Blades
,” PhD thesis,
KTH Royal Institute of Technology
,
Stockholm
.
12.
Nowinski
,
M.
, and
Panovsky
,
J.
,
1999
, “
Flutter Mechanisms in Low Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
82
88
.
13.
Waite
,
J. J.
, and
Kielb
,
R. E.
,
2014
, “
Physical Understanding and Sensitivities of Low Pressure Turbine Flutter
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
012502
.
14.
Hoyniak
,
D.
, and
Fleeter
,
S.
,
1986
, “
Forced Response Analysis of an Aerodynamically Detuned Supersonic Turbomachine Rotor
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
108
(
2
), pp.
117
124
.
15.
Kielb
,
J. J.
,
Abhari
,
R. S.
, and
Dunn
,
M. G.
,
2001
, “
Experimental and Numerical Study of Forced Response in a Full-Scale Rotating Turbine
,”
Turbo Expo: Power for Land, Sea, and Air
,
New Orleans, LA
,
June 4–7
,
American Society of Mechanical Engineers
, p. V004T03A029.
16.
Gao
,
Y.
,
Gutierrez Salas
,
M.
,
Petrie-Repar
,
P.
, and
Gezork
,
T.
,
2019
, “
Forced Response Analysis of a Radial Turbine With Different Modelling Methods
,”
Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
,
American Society of Mechanical Engineers
, p. V07AT36A022.
17.
Kawakubo
,
T.
,
2010
, “
Unsteady Rotor–Stator Interaction of a Radial-Inflow Turbine With Variable Nozzle Vanes
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 44021
,
Glasgow, UK
,
June 14–18
,
American Society of Mechanical Engineers
, pp.
2075
2084
.
18.
Heuer
,
T.
,
Gugau
,
M.
,
Klein
,
A.
, and
Anschel
,
P.
,
2008
, “
An Analytical Approach to Support High Cycle Fatigue Validation for Turbocharger Turbine Stages
,”
Turbo Expo: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
,
American Society of Mechanical Engineers
, pp.
723
732
.
19.
Chiang
,
H.-W. D.
, and
Kielb
,
R. E.
,
1993
, “
An Analysis System for Blade Forced Response
,”
ASME J. Turbomach.
,
115
(
4
), pp.
762
770
.
20.
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2008
, “
Experimental Study on Impeller Blade Vibration During Resonance—Part II: Blade Damping
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022509
.
21.
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2008
, “
Experimental Study on Impeller Blade Vibration During Resonance—Part I: Blade Vibration Due to Inlet Flow Distortion
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022508
.
22.
Bréard
,
C.
,
Vahdati
,
M.
,
Sayma
,
A.
, and
Imregun
,
M.
,
2000
, “
An Integrated Time-Domain Aeroelasticity Model for the Prediction of Fan Forced Response Due to Inlet Distortion
,”
J. Eng. Gas Turbines Power
,
124
(
1
), pp.
196
208
.
23.
Vahdati
,
M.
, and
Imregun
,
M.
,
1996
, “
A Non-linear Aeroelasticity Analysis of a Fan Blade Using Unstructured Dynamic Meshes
,”
IMechE J. Mech. Eng. Sci.
,
210
(
6
), pp.
549
564
.
24.
Green
,
J.
, and
Marshall
,
J.
,
1999
, “
Forced Response Prediction Within the Design Process
,”
3rd European Conference on Turbomachinery
,
London, UK
,
Mar. 2–5
,
Institution of Mechanical Engineers
, IMEHE Paper C557/121/99.
25.
Moffatt
,
S.
,
Ning
,
W.
,
Li
,
Y.
,
Wells
,
R. G.
, and
He
,
L.
,
2005
, “
Blade Forced Response Prediction for Industrial Gas Turbines
,”
J. Propul. Power
,
21
(
4
), pp.
707
714
.
26.
Dickmann
,
H.-P.
,
Secall Wimmel
,
T.
,
Szwedowicz
,
J.
,
Filsinger
,
D.
, and
Roduner
,
C. H.
,
2005
, “
Unsteady Flow in a Turbocharger Centrifugal Compressor: Three-Dimensional Computational Fluid Dynamics Simulation and Numerical and Experimental Analysis of Impeller Blade Vibration
,”
ASME J. Turbomach.
,
128
(
3
), pp.
455
465
.
27.
Goldstein
,
H.
,
Poole
,
C. P.
, and
Safko
,
J. L.
,
2002
,
Classical Mechanics
,
Addison-Wesley Press
,
San Francisco, CA
.
28.
Sadd
,
M. H.
,
2009
,
Elasticity: Theory, Applications, and Numerics
,
Academic Press
,
Burlington, MA
.
29.
Dowell
,
E. H.
,
Curtiss
,
H. C.
,
Scanlan
,
R. H.
, and
Sisto
,
F.
,
1989
,
A Modern Course in Aeroelasticity
, Vol. 3,
Springer
,
New York
.
30.
Zhang
,
W. W.
,
Ye
,
Z. Y.
,
Zhang
,
C. A.
, and
Liu
,
F.
,
2009
, “
Supersonic Flutter Analysis Based on a Local Piston Theory
,”
AIAA J.
,
47
(
10
), pp.
2321
2328
.
31.
Meijer
,
M.-C.
, and
Dala
,
L.
,
2016
, “
Generalized Formulation and Review of Piston Theory for Airfoils
,”
AIAA J.
,
54
(
1
), pp.
17
27
.
32.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2005
,
The Finite Element Method
,
Butterworth-Heinemann
,
Oxford
.
33.
Dhatt
,
G.
,
Lefrançois
,
E.
, and
Touzot
,
G.
,
2012
,
Finite Element Method
,
John Wiley & Sons
,
Hoboken, NJ
.
34.
Dowell
,
E. H.
, and
Voss
,
H. M.
,
1965
, “
Theoretical and Experimental Panel Flutter Studies in the Mach Number Range 1.0 to 5.0
,”
AIAA J.
,
3
(
12
), pp.
2292
2304
.
35.
ANSYS Inc.
,
2019
, “
ANSYS Mechanical User Guide
.”
36.
Dowell
,
E. H.
,
1970
, “
Panel Flutter—A Review of the Aeroelastic Stability of Plates and Shells
,”
AIAA J.
,
8
(
3
), pp.
385
399
.
37.
Ventres
,
C.
, and
Dowell
,
E.
,
1970
, “
Comparison of Theory and Experiment for Nonlinear Flutter of Loaded Plates
,”
AIAA J.
,
8
(
11
), pp.
2022
2030
.
38.
Szedlmayer
,
M. T.
,
Kim
,
K.
,
Kweon
,
C.-B.
, and
Kruger
,
K.
,
2017
, “
The Effect of Fuel Aromatic Content and Cetane Number on Combustion in a UAV Diesel Engine
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
,
Atlanta, GA
,
July 10–12
,
American Institute of Aeronautics and Astronautics
, p.
5029
.
39.
McGowan
,
R. C.
,
Fellows
,
D. W.
,
Bodony
,
D. J.
,
Mojica
,
J. R.
,
Pieri
,
J. J.
,
Kweon
,
C.-B. M.
,
Gibson
,
J. A.
,
Meininger
,
R. D.
, and
Musser
,
M. R.
,
2020
, “
Effect of Altitude on Turbomachinery Vibration in an Aircraft Compression-Ignition Engine
,”
Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
Sept. 21–25
, American Society of Mechanical Engineers, p. V008T20A022.
40.
Agilis Measurement Systems, Inc.
,
2017
, “
Blade Vibration Measurement
.”
41.
Washburn
,
R.
,
2021
, “
Private Communication
.”
42.
Bréard
,
C.
,
Green
,
J.
, and
Imregun
,
M.
,
2003
, “
Low-Engine-Order Excitation Mechanisms in Axial-Flow Turbomachinery
,”
J. Propul. Power
,
19
(
4
), pp.
704
712
.
43.
Elliott
,
R.
,
Sayma
,
A.
, and
Imregun
,
M.
,
2005
, “
Aeromechanical Design of Damped High Pressure Turbine Blades Subject to Low Engine Order Forcing
,” Tech. Rep., Rolls-Royce Ltd, Derby.
44.
Dassault Systèmes Simulia Corporation
,
2019
, “
ABAQUS, Version 2019
.”
45.
Schuff
,
M.
, and
Chenaux
,
V. A.
,
2021
, “
Coupled Mode Flutter Analysis of Turbomachinery Blades Using an Adaptation of the pk Method
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021017
.
46.
Clark
,
S.
,
2010
, “
Coupled-Mode Flutter for Advanced Turbofans
,” Master’s thesis,
Duke University
,
Durham, NC
.
47.
ANSYS Inc.
,
2019
, “
ANSYS CFX Theory Reference
.”
48.
Galindo
,
J.
,
Hoyas
,
S.
,
Fajardo
,
P.
, and
Navarro
,
R.
,
2013
, “
Set-Up Analysis and Optimization of CFD Simulations for Radial Turbines
,”
Eng. Appl. Comput. Fluid Mech.
,
7
(
4
), pp.
441
460
.
49.
Fellows
,
D. W.
,
Bodony
,
D. J.
, and
McGowan
,
R. C.
,
2021
, “
Reduced-Order Modeling of Aeroelasticity in Extreme Speed Turbochargers
,”
AIAA Propulsion and Energy 2021 Forum
,
Virtual
,
Aug. 9–11
,
American Institute of Aeronautics and Astronautics
, pp.
3466
3480
.
50.
Galindo
,
J.
,
Fajardo
,
P.
,
Navarro
,
R.
, and
García-Cuevas
,
L. M.
,
2013
, “
Characterization of a Radial Turbocharger Turbine in Pulsating Flow by Means of CFD and Its Application to Engine Modeling
,”
Appl. Energy
,
103
, pp.
116
127
.
51.
ANSYS Inc.
,
2019
, “
ANSYS Fluent User Guide
.”
You do not currently have access to this content.