Abstract

To date, design processes for electrically powered compressor are mainly based on separate processes for each individual component. Whereas the blading is often designed by an integrated aerodynamic and mechanical design optimization, additional components such as the electrical machine are usually not included. These approaches neglect the interactions of the individual components, which can influence the system performance. This paper demonstrates a multidisciplinary design approach, combining an optimization approach for a compressor stage and an electrical machine. The automated optimization process is based on an evolutionary algorithm, evaluating each individual of a population in terms of aerodynamic performance, structural integrity and performance of the electrical machine. This approach is applied to the design of a mixed-flow compressor for active high-lift applications in aircraft. The results suggest that the overall system efficiency is mainly influenced by the compressor stage, whereas the system mass is dominated by the electrical components which highlights the need to combine both optimization approaches. Key design parameters of high power-density electrical-machine designs are identified. A comparison between a previous compressor-only optimization and a new design based on the new multidisciplinary optimization confirms the improvements the latter optimization approach yields.

References

1.
Teichel
,
S.
,
2018
, “
Optimized Design of Mixed Flow Compressors for an Active High-Lift System
,” Ph.D. thesis,
Leibniz University Hannover
.
2.
Teichel
,
S.
,
Verstraete
,
T.
, and
Seume
,
J.
,
2017
, “
Optimized Multidisciplinary Design of a Small Transonic Compressor for Active High-Lift Systems
,”
Int. J. Gas Turbine Propuls. Power Syst.
,
9
(
2
), pp.
19
26
.
3.
Verstraete
,
T.
,
2010
, “
CADO: A Computer Aided Design and Optimization Tool for Turbomachinery Applications
,”
Second International Conference on Engineering Optimization
,
Lisbon, Portugal
,
Sept. 6–9
, pp.
1
10
.
4.
Narjes
,
G.
,
Müller
,
J.
,
Mertens
,
A.
,
Ponick
,
B.
,
Kauth
,
F.
, and
Seume
,
J.
,
2016
, “
Design Considerations for an Electrical Machine Propelling a Direct Driven Turbo Compressor for Use in Active High-Lift Systems
,”
2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC)
,
Toulouse, France
,
Nov. 2–4
, IEEE, pp.
1
8
.
5.
Kauth
,
F.
,
Narjes
,
G.
,
Müller
,
J.
,
Ponick
,
B.
,
Mertens
,
A.
, and
Seume
,
J. R.
,
2017
, “Compact Electrical Compressors for Active Flow Control in Autonomous High-Lift Systems,”
SFB 880 – Fundamentals of High-Lift for Future Commercial Aircraft
,
Radespiel
,
R.
Semaan
,
R.
, eds.,
TU Braunschweig Campus Forschungsflughafen
,
Braunschweig
, pp.
105
116
.
6.
Kauth
,
F.
,
Narjes
,
G.
,
Müller
,
J.-K.
,
Mertens
,
A.
,
Ponick
,
B.
, and
Seume
,
J. R.
,
2018
, “
Electrically Driven, Compact, Transonic Mixed-Flow Compressor for Active High-Lift Systems in Future Aircraft
,”
GPPS Montreal 2018
,
Montreal, Canada
,
May 7–9
, pp.
1
7
.
7.
Kauth
,
F.
,
Maroldt
,
N.
, and
Seume
,
J. R.
,
2019
, “
Experimental Validation of a Compact Mixed-Flow Compressor for an Active High-Lift System
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
643
(
1
), p.
012142
.
8.
Maroldt
,
N.
,
Kauth
,
F.
, and
Seume
,
J. R.
,
2021
,
Experimental Validation of an Optimized Design Process for Transonic Mixed-Flow Compressors
,
R.
Radespiel
,
and R.
Semaan
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
597
613
.
9.
Wang
,
P.
,
Vera-Morales
,
M.
,
La
,
P.
,
Zangeneh
,
M.
,
Maroldt
,
N.
,
Willers
,
O.
,
Kauth
,
F.
, and
Seume
,
J.
,
2020
, “
Design of a Mixed-Flow Transonic Compressor for Active High-Lift System Using a 3D Inverse Design Methodology
,”
Turbomachinery
,
Virtual, Online
,
Sept. 21–25
.
10.
Kepsu
,
D.
,
Kurvinen
,
E.
,
Tiainen
,
J.
,
Honkatukia
,
J.
,
Turunen-Saaresti
,
T.
, and
Jastrzebski
,
R. P.
,
2021
, “
Interdisciplinary Design of a High-Speed Drivetrain for a Kinetic Compressor in a High-Temperature Heat Pump
,”
IEEE Access
,
9
(
1
), pp.
143877
143900
.
11.
Roclawski
,
H.
,
Böhle
,
M.
, and
Gugau
,
M.
,
2012
, “
Multidisciplinary Design Optimization of a Mixed Flow Turbine Wheel
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, ASME, pp.
499
509
.
12.
Zhang
,
L.
,
Mi
,
D.
,
Yan
,
C.
, and
Tang
,
F.
,
2018
, “
Multidisciplinary Design Optimization for a Centrifugal Compressor Based on Proper Orthogonal Decomposition and an Adaptive Sampling Method
,”
Appl. Sci.
,
8
(
12
), p.
2608
.
13.
Mueller
,
L.
, and
Verstraete
,
T.
,
2019
, “
Adjoint-Based Multi-point and Multi-objective Optimization of a Turbocharger Radial Turbine
,”
Int. J. Turbomach. Propuls. Power
,
4
(
2
), p.
10
.
14.
Aissa
,
M. H.
, and
Verstraete
,
T.
,
2019
, “
Metamodel-Assisted Multidisciplinary Design Optimization of a Radial Compressor
,”
Int. J. Turbomach. Propuls. Power
,
4
(
4
), p.
35
.
15.
Berchiolli
,
G.
, and
Walsh
,
P.
,
2019
, “
Turbocharger Axial Turbines for High Transient Response, Part 2: Genetic Algorithm Development for Axial Turbine Optimisation
,”
Appl. Sci.
,
9
(
13
), p.
2679
.
16.
Kolondzovski
,
Z.
,
Arkkio
,
A.
,
Larjola
,
J.
, and
Sallinen
,
P.
,
2011
, “
Power Limits of High-Speed Permanent-Magnet Electrical Machines for Compressor Applications
,”
IEEE Trans. Energy Convers.
,
26
(
1
), pp.
73
82
.
17.
Li
,
Y.
,
Bobba
,
D.
,
Schubert
,
E.
,
Ding
,
H.
, and
Sarlioglu
,
B.
,
2016
, “
Novel Permanent Magnet Machines With Integrated Fluid Dynamic Design for Compression Applications
,”
Proceedings of the 2016 XXII International Conference on Electrical Machines (ICEM)
,
Lausanne, Switzerland
,
Sept. 4–7
, IEEE, pp.
837
843
.
18.
Uzhegov
,
N.
,
Smirnov
,
A.
,
Park
,
C. H.
,
Ahn
,
J. H.
,
Heikkinen
,
J.
, and
Pyrhonen
,
J.
,
2017
, “
Design Aspects of High-Speed Electrical Machines With Active Magnetic Bearings for Compressor Applications
,”
IEEE Trans. Ind. Electron.
,
64
(
11
), pp.
8427
8436
.
19.
Al-ani
,
M. M. J.
,
Lee
,
S. P.
, and
Allport
,
J. M.
,
2017
, “
Integrated Electrical Machine-Turbo Machinery
,”
Proceedings of the ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
, pp.
1
7
.
20.
Schuster
,
S.
,
Kreischer
,
C.
, and
Brillert
,
D.
,
2017
, “
Introduction of an Integrated Turbo-electrical Machine
,”
Proceedings of the ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
, pp.
1
7
.
21.
Schiffmann
,
J.
,
2015
, “
Integrated Design and Multi-objective Optimization of a Single Stage Heat-Pump Turbocompressor
,”
ASME J. Turbomach.
,
137
(
7
), p.
071002
.
22.
Narjes
,
G.
,
Müller
,
J.-K.
,
Kalla
,
M.
,
Mertens
,
A.
, and
Ponick
,
B.
,
2021
, “Optimization of Integrated Compressor Drives for Electrically Powered High-Lift Systems,”
Fundamentals of High Lift for Future Civil Aircraft
,
Radespiel
,
R.
and
Semaan
,
R.
, eds. (
Notes on Numerical Fluid Mechanics and Multidisciplinary Design
),
Springer International Publishing
,
Cham
.
23.
Dhondt
,
G.
,
2005
,
The Finite Element Method for Three-dimensional Thermomechanical Applications (elektronische ressource) ed.
,
Wiley
,
Chichester
.
24.
Becker
,
K.
,
Heitkamp
,
K.
,
Kügeler
,
E.
,
Pereira
,
J. C. F.
, and
Sequeira
,
A.
,
2010
, “
Recent Progress in a Hybrid-Grid CFD Solver for Turbomachinery Flows
,”
Fifth European Conference on Computational Fluid Dynamics
,
Lisbon, Portugal
,
June 14–17
, pp.
1
13
.
25.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
26.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
Proceedings of the Ninth Symposium on Turbulent Shear Flows.
,
Kyoto, Japan
,
Aug. 16–18
, pp.
1041
1046
.
27.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Rogallo
,
R. S.
,
1985
, “
Effect of Rotation on Isotropic Turbulence: Computation and Modelling
,”
J. Fluid Mech.
,
154
(
1
), pp.
321
336
.
28.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
29.
Müller
,
G.
,
Vogt
,
K.
, and
Ponick
,
B.
,
2008
,
Berechnung elektrischer Maschinen
, 6th ed. Vol.
2
,
WILEY‐VCH Verlag GmbH & Co KGaA
,
Weinheim, Germany
.
You do not currently have access to this content.