Abstract

The tip clearance size has historically been considered to be the main factor affecting stability range in axial fan and compressors. This paper reveals that the stall characteristics are defined by the axial momentum flux of the tip leakage flow and that tip clearance is primarily a strong driver for this metric. A bespoke methodology for carefully tailoring the axial momentum via three-dimensional design is presented, which enables a higher degree of control over the stability range for cases where the tip clearance responds to other considerations and cannot be defined for this purpose. The effect of the axial momentum on efficiency is also addressed and the trade-off between operability range and design point performance is derived. The results show that the conditions for optimal stability differ from those for optimal efficiency and that control over the axial momentum enables tuning the design for a desired exchange. Numerical simulations have been employed to drive the analysis through a high-fidelity computational model whose behavior is supported by rich set of experimental data. Contrary to current belief, results further indicate that an accurate characterization of stall, including onset mechanism, can be achieved through steady-state simulations, minimizing the need for expensive time-accurate computations during the design phase.

References

1.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
123
.
2.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
3.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.
4.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.
5.
Garnier
,
V. H.
,
Epstein
,
A. H.
, and
Greitzer
,
E. M.
,
1991
, “
Rotating Waves as a Stall Inception Indication in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
290
301
.
6.
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Frechette
,
L. G.
,
Epstein
,
A. H.
,
Greitzer
,
E. M.
,
Bright
,
M. M.
, and
Strazisar
,
A. J.
,
1998
, “
Controls and Diagnostics Committee: Active Stabilization of Rotating Stall and Surge in a Transonic Single-Stage Axial Compressor
,”
ASME J. Turbomach.
,
120
(
4
), pp.
625
636
.
7.
Spakovszky
,
Z. S.
,
van Schalkwyk
,
C. M.
,
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Suder
,
K. L.
, and
Bright
,
M. M.
,
1999
, “
Rotating Stall Control in a High-Speed Stage With Inlet Distortion: Part II—Circumferential Distortion
,”
ASME J. Turbomach.
,
121
(
3
), pp.
517
524
.
8.
Williams
,
T. S.
,
Hall
,
C. A.
, and
Wilson
,
M.
,
2020
, “
Low Pressure Ratio Transonic Fan Stall With Radial Distortion
,”
J. Global Power Propul. Soc.
,
4
(
1
), pp.
226
237
.
9.
Weichert
,
S.
, and
Day
,
I.
,
2013
, “
Detailed Measurements of Spike Formation in an Axial Compressor
,”
ASME J. Turbomach.
,
136
(
5
), p.
051006
.
10.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
11.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
12.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part I: Experimental Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051002
.
13.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S. D.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2019
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME J. Turbomach.
,
141
(
6
), p.
061010
.
14.
Choi
,
M.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2011
, “
Effects of Fan Speed on Rotating Stall Inception and Recovery
,”
ASME J. Turbomach.
,
133
(
4
), p.
041013
.
15.
Choi
,
M.
,
Smith
,
N. H. S.
, and
Vahdati
,
M.
,
2012
, “
Validation of Numerical Simulation for Rotating Stall in a Transonic Fan
,”
ASME J. Turbomach.
,
135
(
2
), p.
021004
.
16.
Kim
,
S.
,
Pullan
,
G.
,
Hall
,
C. A.
,
Grewe
,
R. P.
,
Wilson
,
M. J.
, and
Gunn
,
E.
,
2019
, “
Stall Inception in Low-Pressure Ratio Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071005
.
17.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
1999
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
), pp.
45
54
.
18.
Cevik
,
M.
,
Duc Vo
,
H.
, and
Yu
,
H.
,
2016
, “
Casing Treatment for Desensitization of Compressor Performance and Stability to Tip Clearance
,”
ASME J. Turbomach.
,
138
(
12
), p.
121008
.
19.
Rolfes
,
M.
,
Lange
,
M.
,
Vogeler
,
K.
, and
Mailach
,
R.
,
2017
, “
Experimental and Numerical Investigation of a Circumferential Groove Casing Treatment in a Low-Speed Axial Research Compressor at Different Tip Clearances
,”
ASME J. Turbomach.
,
139
(
12
), p.
121009
.
20.
Li
,
J.
,
Lin
,
F.
,
Tong
,
Z.
,
Nie
,
C.
, and
Chen
,
J.
,
2014
, “
The Dual Mechanisms and Implementations of Stability Enhancement With Discrete Tip Injection in Axial Flow Compressors
,”
ASME J. Turbomach.
,
137
(
3
), p.
031010
.
21.
Wang
,
W.
,
Liu
,
B.
,
Lu
,
J.
,
Feng
,
J.
,
Chu
,
W.
, and
Wu
,
Y.
,
2022
, “
Comparative Study of Tip Injection in a Transonic and Subsonic Compressor
,”
ASME J. Turbomach.
,
144
(
6
), p.
061009
.
22.
Shahpar
,
S.
,
2020
, “
Building Digital Twins to Simulate Manufacturing Variation
,”
Proc. ASME Turbo. Expo.
,
Virtual, Online
,
Sept. 21–25
.
23.
Milli
,
A.
, and
Shahpar
,
S.
,
2012
, “
PADRAM: Parametric Design and Rapid Meshing System for Complex Turbomachinery Configurations
,”
Proc. ASME Turbo. Expo.
,
Copenhagen, Denmark
,
June 11-15
.
24.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan—Part I: Modification of Spalart–Allmaras Turbulence Model
,”
ASME J. Turbomach.
,
140
(
5
), p.
051008
.
25.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart–Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
26.
Lapworth
,
L.
,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation (IC-SEC)
,
Singapore
,
June 30–July 2
.
27.
Ferguson
,
D. E.
,
1960
, “
Fibonaccian Searching
,”
Commun. ACM
,
3
(
12
), p.
648
.
28.
Lopez
,
D. I.
,
Ghisu
,
T.
, and
Shahpar
,
S.
,
2021
, “
Global Optimization of a Transonic Fan Blade Through AI-Enabled Active Subspaces
,”
ASME J. Turbomach.
,
144
(
1
), p.
011013
.
29.
Ghisu
,
T.
,
Lopez
,
D. I.
,
Seshadri
,
P.
, and
Shahpar
,
S.
,
2021
, “
Gradient-Enhanced Least-Square Polynomial Chaos Expansions for Uncertainty Quantification and Robust Optimization
,”
AIAA Aviation 2021 Forum.
,
Virtual, Online
,
Aug. 2–6
.
30.
Biollo
,
R.
, and
Benini
,
E.
,
2009
, “
Shock/Boundary-Layer/Tip-Clearance Interaction in a Transonic Rotor Blade
,”
J. Propul. Power
,
25
(
3
), pp.
668
677
.
31.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc.: Ser. B (Methodol.)
,
58
(
1
), pp.
267
288
.
You do not currently have access to this content.