Abstract

In this article, a new hybrid time and frequency domain method called the approximate time domain nonlinear harmonic method is proposed for a robust and efficient analysis of turbomachinery unsteady flow with more than one fundamental mode. The proposed method combines the features of the nonlinear harmonic method and the time domain harmonic balance method. Unsteady flow components are grouped according to their fundamental frequencies and inter blade phase angles, and separate unsteady flow governing equations are constructed for each mode group. These mode groups are connected using the least squares method based Fourier transform. The proposed method is expected to be exact for a linear problem but approximate for a nonlinear problem. Three sets of analyses with increasing levels of difficulties are presented to demonstrate the validity and effectiveness of the proposed method by comparing it with the time domain harmonic balance method based on the almost periodic Fourier transform.

References

1.
Hall
,
K.
, and
Lorence
,
C.
,
1993
, “
Calculation of Three-Dimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations
,”
ASME J. Turbomach.
,
115
(
4
), pp.
800
809
.
2.
He
,
L.
, and
Ning
,
W.
,
1998
, “
An Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA. J.
,
36
(
11
), pp.
2005
2012
.
3.
Chen
,
T.
,
Vasanthakumar
,
P.
, and
He
,
L.
,
2001
, “
Analysis of Unsteady Blade Row Interaction Using Nonlinear Harmonic Approach
,”
J. Propul. Power.
,
17
(
3
), pp.
651
658
.
4.
He
,
L.
,
Chen
,
T.
,
Wells
,
R.
,
Li
,
Y.
, and
Ning
,
W.
,
2002
, “
Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachines
,”
ASME J. Turbomach.
,
124
(
4
), pp.
564
571
.
5.
Vilmin
,
S.
,
Lorrain
,
E.
,
Tartinville
,
B.
,
Capron
,
A.
, and
Hirsch
,
C.
,
2013
, “
The Nonlinear Harmonic Method: From Single Stage to Multi-Row Effects
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
88
99
.
6.
Wang
,
F.
, and
di Mare
,
L.
,
2019
, “
Favre-Averaged Nonlinear Harmonic Method for Compressible Periodic Flows
,”
AIAA. J.
,
57
(
3
), pp.
1133
1142
.
7.
Hall
,
K.
,
Thomas
,
J.
, and
Clark
,
W.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA. J.
,
40
(
5
), pp.
879
886
.
8.
Sicot
,
F.
,
Dufour
,
G.
, and
Gourdain
,
N.
,
2012
, “
A Time-Domain Harmonic Balance Method for Rotor/stator Interactions
,”
ASME J. Turbomach.
,
134
(
1
), p.
011001
.
9.
Mcmullen
,
M.
,
Jameson
,
A.
, and
Alonso
,
J.
,
2006
, “
Demonstration of Nonlinear Frequency Domain Methods
,”
AIAA. J.
,
44
(
7
), pp.
1428
1435
.
10.
Guédeney
,
T.
,
Gomar
,
A.
,
Gallard
,
F.
,
Sicot
,
F.
,
Dufour
,
G.
, and
Puigt
,
G.
,
2013
, “
Non-Uniform Time Sampling for Multiple-Frequency Harmonic Balance Computations
,”
J. Comput. Phys.
,
236
, pp.
317
345
.
11.
Ekici
,
K.
, and
Hall
,
K. C.
,
2007
, “
Nonlinear Analysis of Unsteady Flows in Multistage Turbomachines Using Harmonic Balance
,”
AIAA. J.
,
45
(
5
), pp.
1047
1057
.
12.
Nimmagadda
,
S.
,
Economon
,
T. D.
,
Alonso
,
J. J.
, and
da Silva
,
C. R. I.
,
2016
, “
Robust Uniform Time Sampling Approach for the Harmonic Balance Method
,”
46th AIAA Fluid Dynamics Conference
,
Washington, DC
,
June 13–17
.
13.
Li
,
H.
, and
Ekici
,
K.
,
2021
, “
Supplemental-Frequency Harmonic Balance: A New Approach for Modeling Aperiodic Aerodynamic Response
,”
J. Comput. Phys.
,
436
, p.
110278
.
14.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,” Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, June 16–20,
Paper No. GT2014-25230
.
15.
Junge
,
L.
,
Frey
,
C.
,
Ashcroft
,
G.
, and
Kügeler
,
E.
,
2021
, “
A New Harmonic Balance Approach Using Multidimensional Time
,”
ASME J. Eng. Gas. Turbines. Power.
,
143
(
8
), p.
081007
.
16.
Kundert
,
K.
,
Sorkin
,
G.
, and
Sangiovanni-Vincentelli
,
A.
,
1988
, “
Applying Harmonic Balance to Almost-Periodic Circuits
,”
IEEE Trans. Microw. Theory Techn.
,
36
(
2
), pp.
366
378
.
17.
Wang
,
D.
,
Zhang
,
S.
,
Huang
,
X.
, and
Huang
,
H.
,
2022
, “
Coupled Time and Passage Spectral Method for an Efficient Resolution of Turbomachinery Far Upstream Wakes
,”
ASME J. Turbomach.
,
144
(
2
), p.
021006
.
18.
Wang
,
D.
, and
Huang
,
X.
,
2017
, “
A Complete Rotor-Stator Coupling Method for Frequency Domain Analysis of Turbomachinery Unsteady Flow
,”
Aerosp. Sci. Technol.
,
70
, pp.
367
377
.
19.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Proceedings of 30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
, Paper No. 92–0439.
20.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes
,”
AIAA 14th Fluid and Plasma Dynamic Conference
,
Palo Alto, CA
,
June 23–25
, AIAA Paper No. 81-1259.
21.
Yoon
,
S.
, and
Jameson
,
A.
,
1988
, “
Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equations
,”
AIAA. J.
,
2
(
9
), pp.
1025
1026
.
22.
Wang
,
D.
, and
Huang
,
X.
,
2017
, “
Solution Stabilization and Convergence Acceleration for the Harmonic Balance Equation System
,”
ASME J. Eng. Gas. Turbines. Power.
,
139
(
9
), p.
092503
.
23.
Huang
,
X.
,
Wu
,
H.
, and
Wang
,
D.
,
2018
, “
Implicit Solution of Harmonic Balance Equation System Using the LU-SGS Method and One-Step Jacobi/Gauss-Seidel Iteration
,”
Int. J. Comput. Fluid Dyn.
,
32
(
4–5
), pp.
218
232
.
24.
Wang
,
D.
, and
Zhang
,
S.
,
2021
, “
Efficient Analysis of Unsteady Flows Within Multi-stage Turbomachines Using the Coupled Time and Passage Spectral Method
,”
Proceedings of Global Power and Propulsion Society
,
Xi’an, China
,
Oct. 18–20
, Paper No. GPPS-TC-2021-0004.
25.
Junge
,
L.
,
Ashcroft
,
G.
,
Jeschke
,
P.
, and
Frey
,
C.
,
2015
, “
On the Application of Frequency-Domain Methods to Multistage Turbomachinery
,”
Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montréal, Canada
,
June 15–19
, Paper No. GT2015-42936.
You do not currently have access to this content.