Abstract

In-service deterioration can lead to undesired shape variations on high-pressure turbine rotor blades. This can have a significant impact on efficiency, power generation, and component life. Loss of power production from the high-pressure turbine rotor causes engine over-throttling to compensate for the lower performance. This will in turn worsen the operating conditions and ultimately reduce the life of the component. The aim of this study is to provide a high-fidelity flow simulation of in-serviced shrouded high-pressure turbine (HPT) blades of a modern Jet Engine. Shape variation effects on the aerodynamic performance of several shrouded HPT blades with a different number of in-service hours have been investigated. In order to establish a digital model of the shape variation, a novel reverse-engineering procedure is carried out to come up with a parametrized definition of each blade's variations from nominal including any observable damage. The investigation is conducted by means of an in-house, full 3D steady-state Reynolds-averaged Navier–Stokes (RANS) simulation of the flow around a series of damaged rotor blade geometries, which are obtained through high-resolution optical blue-light “Gesellschaft für Optische Messtechnik” (GOM) scans. The analysis shows that the aerodynamic performance of the HPT rotor blades under investigation is primarily sensitive to shroud damage, which is found to account for efficiency losses often greater than 3%, and for more than 80% of the total performance loss. A secondary role on efficiency is found to be played by the blade shape deviation. A highly linear correlation is found between HPT stage efficiency and a combination of shroud damage parameters.

References

1.
Glezer
,
B.
,
Harvey
,
N.
,
Camci
,
C.
,
Bunker
,
R.
, and
Ameri
,
A.
,
2004
,
VKI LS 2004-02, Turbine Blade Tip Design and Tip Clearance Treatment
,
von Karman Institute for Fluid Dynamics
,
Rhode-St-Genese, Belgium
, pp.
1
23
.
2.
Ruffles
,
P. C.
,
2000
, “
The future of aircraft propulsion
,”
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
,
214
(
1
), pp.
289
305
.
3.
Bunker
,
R. S.
,
2001
, “
Integration of New Aero-Thermal and Combustion Technologies With Long-Term Design Philosophies for Gas Turbine Engines
,”
US-Ukranian Workshop on Innovative Combustion and Aerothermal Technologies in Energy and Power Systems
,
Kiev, Ukraine
.
4.
Harvey
,
N. W.
,
2004
, “Aerothermal Implications of Shroudless and Shrouded Blades,”
VKI LS 2004-02, Turbine Blade Tip Design and Tip Clearance Treatment
,
von Karman Institute for Fluid Dynamics
,
Rhode-St-Genese, Belgium
.
5.
Colón
,
S.
,
Ricklick
,
M.
,
Nagy
,
D.
, and
Lafleur
,
A.
,
2019
, “
Geometric Effects of Thermal Barrier Coating Damage on Turbine Blade Temperatures
,”
ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ,
GT2019-90886.
6.
Ogiriki
,
E. A.
,
Li
,
Y. G.
,
Nikolaidis
,
T.
,
ThankGod
,
E. I.
, and
Sule
,
G.
,
2015
, “
Effect of Fouling, Thermal Barrier Coating Degradation and Film Cooling Holes Blockage on Gas Turbine Engine Creep Life
,”
Procedia CIRP
,
38
, pp.
228
233
.
7.
Jarrett
,
A.
,
Erukulla
,
V. V.
, and
Koul
,
A. K.
,
2019
, “
Untwist Creep Analysis of Gas Turbine First Stage Blade
,”
ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ,
GT2019-90979.
8.
Jean-Roch
,
J.
, and
Nor
,
N. A. M.
,
2019
, “
A Methodology and Case Study of Outboard Traverse Flame Detection on Aeroderivative Gas Turbines
,”
ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
, GT2019-90158.
9.
Kamenik
,
J.
,
Shahpar
,
S.
,
Keane
,
A. J.
,
Hogner
,
L.
,
Meyer
,
M.
, and
Toal
,
D. J. J.
,
2020
, “
Modelling and Impact of High-Pressure Turbine Blade Trailing Edge Film Cooling Hole Variations
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
.
10.
Sidwell
,
C. V.
,
2004
, “
On the Impact of Variability and Assembly on Turbine Blade Cooling Flow and Oxidation Life
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
.
11.
Dundas
,
R. E.
,
1993
, “
Investigation of Failure in Gas Turbines: Part 2—Engineering and Metallographic Aspects of Failure Investigation
,”
ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, OH,
May 24–27
, 93-GT-84.
12.
Kolagar
,
A. M.
,
Tabrizi
,
N.
,
Cheraghzadeh
,
M.
, and
Shahriari
,
M. S.
,
2017
, “
Failure Analysis of Gas Turbine First Stage Blade Made of Nickel-Based Superalloy
,”
Case Stud. Eng. Fail. Anal.
,
8
, pp.
71
78
.
13.
Guo
,
X.
,
Zheng
,
W.
,
Xiao
,
C.
,
Li
,
L.
,
Antonov
,
S.
,
Zheng
,
Y.
, and
Feng
,
Q. C.
,
2019
, “
Evaluation of Microstructural Degradation in a Failed Gas Turbine Blade Due to Overheating
,”
Eng. Fail. Anal.
,
103
, pp.
308
318
.
14.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
,
1951
,
A Method of Performance Estimation for Axial-Flow Turbines
, British Aeronautical Research Council R&M 2974, Aeronautical Research Council London, UK.
15.
Baljé
,
O. E.
, and
Binsley
,
R. L.
,
1968
, “
Axial Turbine Performance Evaluation. Part A—Loss-Geometry Relationships
,”
J. Eng. Power
,
90
(
4
), pp.
341
348
.
16.
Mukhtarov
,
M. K.
, and
Krichakin
,
V. I.
,
1969
, “
A Procedure for Estimating Losses in the Flow Path of Axial Turbines in Calculating Their Characteristics
,”
Teploenergetika
,
7
, pp.
26
31
.
17.
A. V.
Zaita
,
G.
Buley
and
G.
Karlsons
1997
, “
Performance Deterioration Modeling in Aircraft Gas Turbine Engines
,”
International Gas Turbine & Aeroengine Congress & Exhibition
,
Orlando, FL
, June 2–5.
18.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
19.
W
,
T.
,
1966
,
Thermische Turbomaschinen
,
Springer-Verlag
,
Berlin
.
20.
Gier
,
J.
,
Stubert
,
B.
,
Brouillet
,
B.
, and
de Vito
,
L.
,
2005
, “
Interaction of Shrouded Leakage Flow and Main Flow in a Three-Stage LP Turbine
,”
ASME J. Turbomach.
,
125
(
4
), pp.
649
658
.
21.
Pau
,
M.
,
Cambuli
,
F.
, and
Mandas
,
N.
,
2008
, “
Shroud Leakage Modeling of the Flow in a Two-Stage Axial Test Turbine
,”
ASME Turbo Expo: Power for Land, Sea and Air
,
Berlin, Germany
,
June 9–13
, GT2008-51093, pp.
1333
1343
.
22.
Moustapha
,
S. H.
,
Kacker
,
S. C.
, and
Tremblay
,
B.
,
1990
, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
,
112
(
2
), pp.
267
276
.
23.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
1997
, “
Influence of Leading-Edge Geometry on Profile Losses in Turbines at Off-Design Incidence: Experimental Results and an Improved Correlation
,”
ASME J. Turbomach.
,
119
(
2
), pp.
193
200
.
24.
Yoon
,
S.
,
Vandeputte
,
T.
,
Mistry
,
H.
,
Ong
,
J.
, and
Stein
,
A.
,
2006
, “
Loss Audit of a Turbine Stage
,”
ASME J. Turbomach.
,
138
(
5
), p.
051004
.
25.
Denton
,
J. D.
, and
Xu
,
L.
,
1990
, “
The Trailing Edge Loss of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
277
285
.
26.
Shahpar
,
S.
, “
Building Digital Twins to Simulate Manufacturing Variation
,”
ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
September 2020
, GT2020-15263.
27.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “
PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation, GT2003-38698
,”
ASME Turbo Expo and International Joint Power Generation Conference
,
Atlanta, GA
, pp.
579
590
.
28.
Demargne
,
A. A. J.
,
Evans
,
R. O.
,
Tiller
,
P. J.
, and
Dawes
,
W. N.
,
2014
, “
Practical and Reliable Mesh Generation for Complex, Real World Geometries
,”
AIAA 52nd Aerospace Sciences Meeting, National Harbor
,
MD
, AIAA 2014-0119.
29.
Lapworth
,
L.
,
2004
, “
Hydra CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation (IC-SEC)
,
Singapore
.
30.
Occhioni
,
G.
,
Shahpar
,
S.
, and
Li
,
H.
,
2017
, “
Multi-Fidelity Modelling of a Fully-Featured HP Turbine Stage
,”
ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
, GT2017-64478.
31.
Shahpar
,
S.
,
2002
, “
SOFT: A New Design and Optimisation Tool fo rTurbomachinery
,”
CIMNE: Evolutionary Methods for Design, Optimisation and Control
,
Barcelona, Spain
.
32.
Seshadri
,
P.
, and
Parks
,
G.
,
2017
, “
Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies
,”
J. Open Source Softw.
,
2
(
11
), p.
166
.
33.
Ghisu
,
T.
, and
Shahpar
,
S.
,
2018
, “
Affordable Uncertainty Quantification for Industrial Problems: Application to Aero-Engine Fans
,”
ASME J. Turbomach.
,
140
(
6
), p.
061005
.
You do not currently have access to this content.