Abstract

Loss analysis is a valuable technique for improving the thermodynamic performance of turbomachines. Analyzing loss in terms of the “mechanical work potential” (Miller, R.J., ASME Turbo Expo 2013, GT2013-95488) provides an instantaneous and local account of the thermal and aerodynamic mechanisms contributing to the loss of thermodynamic performance. This study develops the practical application of mechanical work potential loss analysis, providing the mathematical formulations necessary to perform loss analysis using practical Reynolds-averaged Navier–Stokes (RANS) or large eddy simulations (LES). The analysis approach is demonstrated using RANS and LES of a linear compressor cascade, both with and without incoming wakes. Spatial segmentation is used to attribute loss contributions to specific regions of the flow, and phase-averaging is performed in order to associate the variation of different loss contributions with the periodic passage of wakes through the cascade. For this un-cooled linear cascade, viscous dissipation is the dominant source of loss. The analysis shows that the contribution of the viscous reheat effect depends on the operating pressure of the compressor stage relative to the ambient “dead state” pressure—implying that the optimal blade profile for a low-pressure compressor stage may be different from the optimal profile for a high-pressure compressor stage in the same engine, even if the operating conditions for both stages are dynamically similar.

References

1.
Michelassi
,
V
,
Chen
,
L. W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines–Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach
,
137
(
7
), p.
071005
. 10.1115/1.4029126
2.
Leggett
,
J
,
Priebe
,
S
,
Shabbir
,
A
,
Michelassi
,
V
,
Sandberg
,
R. D.
, and
Richardson
,
E
,
2018
, “
Loss Prediction in an Axial Compressor Cascade at Off-Design Incidences With Free Stream Disturbances Using Large Eddy Simulation
,”
ASME J. Turbomach
,
140
(
7
), p.
071005
. 10.1115/1.4039807
3.
Sinkwitz
,
M
,
Winhart
,
B
,
Engelmann
,
D
,
Mare
,
F di
, and
Mailach.
,
R
,
2018
, “
On the Periodically Unsteady Interaction of Wakes, Secondary Flow Development and Boundary Layer Flow in an Annular LPT Cascade: Part 1–Experimental Investigation
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
.
4.
Drela
,
M
,
2009
, “
Power Balance in Aerodynamic Flows
,”
AIAA J.
,
47
(
7
), pp.
1761
1771
. 10.2514/1.42409
5.
Dunbar
,
W. R.
,
Lior
,
N
, and
Gaggioli
,
R. A.
,
1992
, “
The Component Equations of Energy and Exergy
,”
ASME J. Energy Res. Technol.
,
114
(
1
), pp.
75
83
. 10.1115/1.2905924
6.
Miller.
,
R. J.
,
2013
, “
Mechanical Work Potential
,”
ASME Turbo Expo 2013
,
San Antonio, TX
, pp.
1
13
.
7.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach
,
115
(
4
), pp.
621
–656. 10.1115/1.2929299
8.
S Wheeler
,
A. P.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R
,
Michelassi
,
V
, and
Laskowski
,
G
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach
,
138
(
7
), p.
071003
. 10.1115/1.4032435
9.
Leggett
,
J
,
Sandberg
,
R. D.
,
Michelassi
,
V
,
Priebe
,
S
, and
Shabbir.
,
A
,
2016
, “
Detailed Investigation of Rans and Les Predictions of Loss Generation
,”
ASME Turbo Expo: Power for Land, Sea, and Air
,
Seoul, South Korea
, Vol.
2A
, p.
49699
.
10.
Leipold
,
R
,
Boese
,
M
, and
Fottner
,
L
,
2000
, “
The Influenceof Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach
,
122
(
3
), pp.
416
424
. 10.1115/1.1302286
11.
Hilgenfeld
,
L
, and
Pfitzner
,
M
,
2004
, “
Unsteady Boundary Layer Development Due to Wake Passing Effects on a Highly Loaded Linear Compressor Cascade
,”
ASME J. Turbomach
,
126
(
4
), pp.
493
–500. 10.1115/1.1791290
12.
Nicoud
,
F
, and
Ducros
,
F
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbulence Combust
,
62
(
3
), pp.
183
200
. 10.1023/A:1009995426001
13.
Klein
,
M
,
Sadiki
,
A
, and
Janicka
,
J
,
2003
, “
A Digital Fil-Ter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comput. Phys
,
186
(
2
), pp.
652
665
. 10.1016/S0021-9991(03)00090-1
14.
Sandberg
,
R. D.
,
Michelassi
,
V
,
Pichler
,
R
,
Chen
,
L
, and
Johnstone
,
R
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines–Part I: Methodology
,”
ASME J. Turbomach
,
137
(
5
), p.
051011
. 10.1115/1.4028731
15.
Sandberg
,
R. D.
,
2012
, “
Numerical Investigation of Turbulent Supersonic Axisymmetric Wakes
,”
J. Fluid Mech
,
702
(
1
), pp.
488
520
. 10.1017/jfm.2012.201
16.
Shin
,
D. H.
,
Aspden
,
A. J.
, and
Richardson
,
E. S.
,
2017
, “
Self-Similar Properties of Decelerating Turbulent Jets
,”
J. Fluid Mech.
,
833
(
1
), p.
R1
. 10.1017/jfm.2017.600
17.
Shin
,
D. H.
,
Sandberg
,
R. D.
, and
Richardson
,
E. S.
,
2017
, “
Self-Similarity of Fluid Residence Time Statistics in a Turbulent Round Jet
,”
J. Fluid Mech
,
823
(
1
), pp.
1
25
. 10.1017/jfm.2017.304
18.
Smith
,
L. H.
,
1966
, “
Wake Dispersion in Turbomachines
,”
J. Basic Engin.
,
88
(
3
), pp.
688
690
. 10.1115/1.3645942
19.
Praisner
,
T. J.
,
Clark
,
J. P.
,
Nash
,
T. C.
,
Rice
,
M. J.
, and
Grover
,
E. A.
,
2006
, “
Performance Impacts Due to Wakemixing in Axial-flow Turbomachinery
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcalona, Spain
, American Society of Mechanical Engineers, pp.
1821
1830
.
20.
Hodson
,
H. P.
,
Hynes
,
T. P.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2009
, “
A Physical Interpretation of Stagnation Pressure and Enthalpy Changes in Un-Steady Flow
,”
ASME J. Turbomach
,
134
(
6
), p.
060902
. 10.1115/1.4007208
You do not currently have access to this content.