“Two-regime-surge” is a special instability behavior of compressors, which was investigated in this paper. When the compressor operates at medium rotor speed, mild surge happens first, where the transient pressure signals show sinusoidal form with Helmholtz frequency of the compressor system. Reducing the mass flow rate, the mild surge vanishes and gets replaced by the local stall. Further reducing the mass flow rate, deep surge breaks out suddenly. During two-regime-surge, two distinct surge patterns exit and vastly narrow stable flow range, which highlights the characteristics of two-regime-surge. It is found that the impeller leading-edge stall is a necessary part of the mild surge, while the diffuser rotating stall incepts the deep surge. At higher speeds, the mild surge oscillation prompts the early occurrence of the diffuser stall so that the mild surge transforms and the deep surge happens in advance. As a result, both regimes of mild surge and deep surge are going to merge, and the stable flow range at high rotational speed is greatly narrowed. Impeller casing treatment is considered as an effective method for flow range extension because the impeller leading-edge stall is removed and the mild surge is avoided as well.

References

1.
Greitzer
,
E. M.
,
1981
, “
The Stability of Pumping System—The 1980 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
193
242
.10.1115/1.3241725
2.
Stenning
,
A. H.
,
1980
, “
Rotating Stall and Surge
,”
ASME J. Fluids Eng.
,
102
(
1
), pp.
14
20
.10.1115/1.3240618
3.
Emmons
,
H. W.
,
Pearson
,
C. F.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
77
, pp.
455
469
.
4.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part II: Experimental Results and Compression
,”
J. Eng. Power
,
98
(
2
), pp.
199
217
.10.1115/1.3446139
5.
Haynes
,
J. M.
,
Hendricks
,
G. K.
, and
Epstein
,
A. H.
,
1994
, “
Active Stabilization of Rotating Stall in a Three-Stage Axial Compressor
,”
ASME J. Turbomach.
,
116
(
2
), pp.
226
239
.10.1115/1.2928357
6.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial-Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.10.1115/1.2929209
7.
Moore
,
F. K.
,
1984
, “
A Theory of Rotating Stall of Multistage Axial Compressors—Part I: Small Disturbances
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
313
320
.10.1115/1.3239565
8.
Moore
,
F. K.
,
1984
, “
A Theory of Rotating Stall of Multistage Axial Compressors—Part II: Finite Disturbances
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
321
326
.10.1115/1.3239566
9.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems—Part I: Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.10.1115/1.3239887
10.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems—Part II: Application
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
231
239
.10.1115/1.3239893
11.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
A Study of Spike and Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.10.1115/1.2841730
12.
Spakovszky
,
Z. S.
, and
Roduner
,
C. H.
,
2009
, “
Spike & Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
131
(
3
), p.
031012
.10.1115/1.2988166
13.
Tan
,
C. S.
,
Day
,
I.
, and
Morris
,
S.
,
2010
, “
Spike-Type Compressor Stall Inception, Detection, and Control
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
275
300
.10.1146/annurev-fluid-121108-145603
14.
Wernet
,
M. P.
,
Bright
,
M. M.
, and
Shoch
,
G. J.
,
2001
, “
An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV
,”
ASME J. Turbomach.
,
123
(
2
), pp.
418
428
.10.1115/1.1343465
15.
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Cumpsty
,
N. A.
,
1978
, “
Prediction of Compressor Performance in Rotating Stall
,”
ASME J. Eng. Gas Turbines Power
,
100
(
1
), pp.
1
12
.10.1115/1.3446318
16.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Krieger
,
Malabar, FL
, pp.
359
409
.
17.
Day
,
I. J.
,
Breuer
,
T.
, and
Escuret
,
J.
,
1999
, “
Stall Inception and the Prospects for Active Control in Four High-Speed Compressors
,”
ASME J. Turbomach.
,
121
(
1
), pp.
18
27
.10.1115/1.2841229
18.
Amann
,
C. A.
,
Nordenson
,
G. E.
, and
Skellenger
,
G. D.
,
1975
, “
Casing Modification for Increasing the Surge Margin of a Centrifugal Compressor in an Automotive Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
97
(
3
), pp.
329
335
.10.1115/1.3445996
19.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
20.
Brown
,
P, G.
,
2002
, “
Experimental Investigation on Vortex Shedding in Flow Over Second-Generation, Controlled-Diffusion, Compressor Blades in Cascade
,” Ph.D. thesis,
Naval Postgraduate School
,
Monterey, CA
.
21.
Hah
,
C.
,
Rabe
,
D. C.
, and
Wadia
,
A. R.
,
2004
, “
Role of Tip-Leakage Vortices and Passage Shock in Stall Inception in a Swept Transonic Compressor Rotor
,”
ASME
Paper No. GT2004-53867. 10.1115/GT2004-53867
22.
Hah
,
C.
,
Bergner
,
J.
, and
Schiffer
,
H. P.
,
2006
, “
Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor-Criteria and Mechanisms
,”
ASME
Paper No. GT2006-90045. 10.1115/GT2006-90045
23.
Zheng
,
X. Q.
,
Huenteler
,
J.
,
Yang
,
M. Y.
,
Zhang
,
Y. J.
, and
Bamba
,
T.
,
2010
, “
Influence of the Volute on the Flow in a Centrifugal Compressor of a High-Pressure Ratio Turbocharger
,”
Proc. Inst. Mech. Eng. Part A
,
224
(
8
), pp.
1157
1169
.10.1243/09576509JPE968
24.
Spakovszky
,
Z. S.
,
2004
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME J. Turbomach.
,
126
(
1
), pp.
1
12
.10.1115/1.1643382
25.
Zheng
,
X. Q.
,
Zhang
,
Y. J.
,
Yang
,
M. Y.
,
Bamba
,
T.
, and
Tamaki
,
H.
,
2013
, “
Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetrical Flow Control—Part II: Nonaxisymmetrical Self-Recirculation Casing Treatment
,”
ASME J. Turbomach.
,
135
(
2
), p.
021007
.10.1115/1.4006637
You do not currently have access to this content.