Abstract

The current work presents a systematic exploration of the pulse electrodeposition process for Ni-Co nanocoating, with a focus on the impact of varying duty cycles (20–100%) and current density (3–9 A/dm2). The work is marked by incremental changes in duty cycle and current density and employs state-of-the-art characterization techniques to analyze surface properties, mechanical strength, tribological behavior, and wettability. Ni-Co pulse electrodeposition at 20% duty cycle and 3 A/dm2 current density dominates with desired attributes for the electronics and aerospace sectors with improved mechano-tribo and contact angle properties. These coatings exhibited superior performance across all aspects that have been studied. The nanotribological experiments were conducted using a novel approach to look into the nanoscale tribological behaviors, thus setting a pioneering effort in this field. Reduction in grain size (∼57–83%) and enhancement in surface roughness (∼64–65%) were the crucial factors contributing to improved mechanical and tribological properties. The nanohardness of the coating increased to 4.36 GPa for the optimum coating, compared to other coatings with varying properties. Similar improvements were recorded in nanotribological properties, with an improvement of ∼30–70% for coatings at 20% duty cycle and 3 A/dm2. The synergetic effect of lower grain size, nanohardness, and surface roughness properties leads to an improved mechano-tribo coating. This advancement holds good potential for industrial applications where wear resistance and surface durability are critical. The optimal coating was analyzed by employing X-ray photoelectron spectroscopy for chemical compositions of coatings, which confirms the formation of nickel oxide and cobalt oxide. This chemical insight adds a valuable layer of understanding, reinforcing the coatings' potential for corrosion resistance and other chemical interactions in a wide range of operation environments.

References

1.
Raub
,
C.
,
1993
, “The History of Electroplating,”
Metal Plating and Patination
,
S.
La Niece
and
P.
Craddock
, eds., Butterworth-Heinemann, Oxford, UK, pp.
284
290
.
2.
Chitra Rubini
,
C.
,
Kumaraguru
,
S.
,
Kale
,
V. N.
,
Rajesh
,
J.
, and
Gnanamuthu
,
R. M.
,
2022
, “
Development of Anti-Corrosion Properties Using Ternary Electrodeposited Zn–Ni–Co Alloys From Acidic Electrolyte for Automobile Applications
,”
Trans. Inst. Met. Finish.
,
100
(
2
), pp.
111
116
.
3.
Pillai
,
A. M.
,
Rajendra
,
A.
, and
Sharma
,
A. K.
,
2012
, “
Pulse Electrodeposition of Nanocrystalline Nickel on AA 6061 for Space Applications
,”
Trans. Inst. Met. Finish.
,
90
(
1
), pp.
44
51
.
4.
Wasekar
,
N. P.
,
Bathini
,
L.
,
Ramakrishna
,
L.
,
Rao
,
D. S.
, and
Padmanabham
,
G.
,
2020
, “
Pulsed Electrodeposition, Mechanical Properties and Wear Mechanism in Ni-W/SiC Nanocomposite Coatings Used for Automotive Applications
,”
Appl. Surf. Sci.
,
527
, p.
146896
.
5.
Larson
,
C.
, and
Farr
,
J. P. G.
,
2012
, “
Current Research and Potential Applications for Pulsed Current Electrodeposition-A Review
,”
Trans. IMF
,
90
(
1
), pp.
20
29
.
6.
Davim
,
J. P.
, and
Charitidis
,
C. A.
,
2013
,
Nanocomposites: Materials, Manufacturing and Engineering
,
De Gruyter
,
Berlin
, pp.
1
224
.
7.
Arya
,
R. K.
,
Verros
,
G. D.
, and
Davim
,
J. P.
,
2024
,
Functional Coatings: Innovations and Challenges
,
Wiley
,
New York
.
8.
Erb
,
U.
,
1995
, “
Electrodeposited Nanocrystals: Synthesis, Properties and Industrial Applications
,”
Nanostruct. Mater.
,
6
(
5–8
), pp.
533
538
.
9.
Gurrappa
,
I.
, and
Binder
,
L.
,
2008
, “
Science and Technology of Advanced Materials Electrodeposition of Nanostructured Coatings and Their Characterization-A Review Injeti Gurrappa & Leo Binder Electrodeposition of Nanostructured Coatings and Their Characterization-a Review
,”
Adv. Mater.
,
9
(
4
), pp.
43001
43012
.
10.
Davim
,
J. P.
,
2017
,
Progress in Green Tribology
,
De Gruyter
,
Berlin
.
11.
Safavi
,
M. S.
,
Tanhaei
,
M.
,
Ahmadipour
,
M. F.
,
Ghaffari Adli
,
R.
,
Mahdavi
,
S.
, and
Walsh
,
F. C.
,
2020
, “
Electrodeposited Ni-Co Alloy-Particle Composite Coatings: A Comprehensive Review
,”
Surf. Coat. Technol.
,
382
, p.
125153
.
12.
Karimzadeh
,
A.
,
Aliofkhazraei
,
M.
, and
Walsh
,
F. C.
,
2019
, “
A Review of Electrodeposited Ni-Co Alloy and Composite Coatings: Microstructure, Properties and Applications
,”
Surf. Coat. Technol.
,
372
, pp.
463
498
.
13.
Tian
,
L.
,
Xu
,
J.
, and
Xiao
,
S.
,
2011
, “
The Influence of PH and Bath Composition on the Properties of Ni–Co Coatings Synthesized by Electrodeposition
,”
Vacuum
,
86
(
1
), pp.
27
33
.
14.
Chang
,
Y. J.
,
Ho
,
C. Y.
, and
Chang
,
C. H.
,
2014
, “
Influence of Material Properties Upon Immobilization of Histidine-Tagged Protein on Ni–Co Coated Chip
,”
Mater. Sci. Eng., C: C
,
37
(
1
), pp.
369
373
.
15.
Kim
,
J. Y.
,
Lee
,
H. J.
, and
Cho
,
Y.-H.
,
2009
, “
Anti-Buckling S-Shaped Vertical Microprobes With Branch Springs
,”
Microelectron. Eng.
,
87
(
9
), pp.
1769
1776
.
16.
Vazquez-Arenas
,
J.
,
Altamirano-Garcia
,
L.
,
Treeratanaphitak
,
T.
,
Pritzker
,
M.
,
Luna-Sánchez
,
R.
, and
Cabrera-Sierra
,
R.
,
2012
, “
Electrochimica Acta Co-Ni Alloy Electrodeposition Under Different Conditions of PH, Current and Composition
,”
Electrochim. Acta
,
65
, pp.
234
243
.
17.
Hansal
,
W. E. G.
,
Tury
,
B.
,
Halmdienst
,
M.
,
Lakatos Varsányi
,
M.
, and
Kautek
,
W.
,
2006
, “
Pulse Reverse Plating of Ni-Co Alloys: Deposition Kinetics of Watts, Sulfamate and Chloride Electrolytes
,”
Electrochim. Acta
,
52
(
3
), pp.
1145
1151
.
18.
Bai
,
A.
, and
Hu
,
C. C.
,
2002
, “
Effects of Electroplating Variables on the Composition and Morphology of Nickel–Cobalt Deposits Plated Through Means of Cyclic Voltammetry
,”
Electrochim. Acta
,
47
(
21
), pp.
3447
3456
.
19.
Lajevardi
,
S. A.
, and
Shahrabi
,
T.
,
2010
, “
Effects of Pulse Electrodeposition Parameters on the Properties of Ni-TiO 2 Nanocomposite Coatings
,”
Appl. Surf. Sci.
,
256
(
22
), pp.
6775
6781
.
20.
Ma
,
C.
,
Zhao
,
D.
, and
Ma
,
Z.
,
2020
, “
Effects of Duty Cycle and Pulse Frequency on Microstructures and Properties of Electrodeposited Ni–Co–SiC Nanocoatings
,”
Ceram. Int.
,
46
(
8
), pp.
12128
12137
.
21.
Xue
,
Z.
,
Lei
,
W.
,
Wang
,
Y.
,
Qian
,
H.
, and
Li
,
Q.
,
2017
, “
Effect of Pulse Duty Cycle on Mechanical Properties and Microstructure of Nickel-Graphene Composite Coating Produced by Pulse Electrodeposition Under Supercritical Carbon Dioxide
,”
Surf. Coat. Technol.
,
325
, pp.
417
428
.
22.
Ghazanlou
,
S. I.
,
Ahmadiyeh
,
S.
, and
Yavari
,
R.
,
2017
, “
Investigation of Pulse Electrodeposited Ni–Co/SiO2 Nanocomposite Coating
,”
Surf. Eng.
,
33
(
5
), pp.
337
347
.
23.
Tury
,
B.
,
Lakatos-Varsányi
,
M.
, and
Roy
,
S.
,
2006
, “
Ni–Co Alloys Plated by Pulse Currents
,”
Surf. Coat. Technol.
,
200
(
24
), pp.
6713
6717
.
24.
Chang
,
L. M.
,
Guo
,
H. F.
, and
An
,
M. Z.
,
2008
, “
Electrodeposition of Ni–Co/Al2O3 Composite Coating by Pulse Reverse Method Under Ultrasonic Condition
,”
Mater. Lett.
,
62
(
19
), pp.
3313
3315
.
25.
Imanian Ghazanlou
,
S.
,
Farhood
,
A. H. S.
,
Ahmadiyeh
,
S.
,
Ziyaei
,
E.
,
Rasooli
,
A.
, and
Hosseinpour
,
S.
,
2019
, “
Characterization of Pulse and Direct Current Methods for Electrodeposition of Ni-Co Composite Coatings Reinforced With Nano and Micro ZnO Particles
,”
Metall. Mater. Trans. A
,
50
(
4
), pp.
1922
1935
.
26.
Jiang
,
Y.
,
Xu
,
Y.
,
Wang
,
M.
, and
Yao
,
H.
,
2017
, “
Effects of Pulse Plating Parameters on the Microstructure and Properties of High Frequency Pulse Electrodeposited Ni–Co/ZrO2 Nanocomposite Coatings
,”
J. Mater. Sci.: Mater. Electron.
,
28
(
1
), pp.
610
616
.
27.
Yang
,
Y.
, and
Cheng
,
Y. F.
,
2013
, “
Fabrication of Ni-Co-SiC Composite Coatings by Pulse Electrodeposition—Effects of Duty Cycle and Pulse Frequency
,”
Surf. Coat. Technol.
,
216
, pp.
282
288
.
28.
Bakhit
,
B.
,
Akbari
,
A.
,
Nasirpouri
,
F.
, and
Hosseini
,
M. G.
,
2014
, “
Corrosion Resistance of Ni-Co Alloy and Ni-Co/SiC Nanocomposite Coatings Electrodeposited by Sediment Codeposition Technique
,”
Appl. Surf. Sci.
,
307
, pp.
351
359
.
29.
Dheeraj
,
P. R.
,
Patra
,
A.
,
Sengupta
,
S.
,
Das
,
S.
, and
Das
,
K.
,
2017
, “
Synergistic Effect of Peak Current Density and Nature of Surfactant on Microstructure, Mechanical and Electrochemical Properties of Pulsed Electrodeposited Ni-Co-SiC Nanocomposites
,”
J. Alloys Compd.
,
729
, pp.
1093
1107
.
30.
Kim
,
D. J.
,
Roh
,
Y. M.
,
Seo
,
H.
, and
Kim
,
J. S.
,
2004
, “
Effects of the Peak Current Density and Duty Cycle on Material Properties of Pulse-Plated Ni-P-Fe Electrodeposits
,”
Surf. Coat. Technol.
,
192
(
1
), pp.
88
93
.
31.
Guglielmi
,
N.
,
1972
, “
Kinetics of the Deposition of Inert Particles From Electrolytic Baths
,”
J. Electrochem. Soc.
,
119
(
8
), p.
1009
.
32.
Celis
,
J. P.
,
Roos
,
J. R.
, and
Buelens
,
C.
,
1987
, “
A Mathematical Model for the Electrolytic Codeposition of Particles With a Metallic Matrix
,”
J. Electrochem. Soc.
,
134
(
6
), pp.
1402
1408
.
33.
John
,
A.
,
Saeed
,
A.
, and
Khan
,
Z. A.
,
2023
, “
Influence of the Duty Cycle of Pulse Electrodeposition-Coated Ni-Al2O3 Nanocomposites on Surface Roughness Properties
,”
Materials
,
16
(
6
), p.
2192
.
34.
Yang
,
B.
, and
Vehoff
,
H.
,
2007
, “
Dependence of Nanohardness Upon Indentation Size and Grain Size—A Local Examination of the Interaction Between Dislocations and Grain Boundaries
,”
Acta Mater.
,
55
(
3
), pp.
849
856
.
35.
Xia
,
F.
,
Li
,
C.
,
Ma
,
C.
,
Li
,
Q.
, and
Xing
,
H.
,
2021
, “
Effect of Pulse Current Density on Microstructure and Wear Property of Ni-TiN Nanocoatings Deposited Via Pulse Electrodeposition
,”
Appl. Surf. Sci.
,
538
, p.
148139
.
36.
Xia
,
F.
,
Li
,
Q.
,
Ma
,
C.
, and
Guo
,
X.
,
2020
, “
Preparation and Characterization of Ni–AlN Nanocoatings Deposited by Magnetic Field Assisted Electrodeposition Technique
,”
Ceram. Int.
,
46
(
2
), pp.
2500
2509
.
37.
Kasar
,
A. K.
,
Bhutta
,
M. U.
,
Khan
,
Z. A.
, and
Menezes
,
P. L.
,
2020
, “
Corrosion Performance of Nanocomposite Coatings in Moist SO2 Environment
,”
Int. J. Adv. Manuf. Technol.
,
106
(
11–12
), pp.
4769
4776
.
38.
Su
,
F.
,
Liu
,
C.
, and
Huang
,
P.
,
2013
, “
Establishing Relationships Between Electrodeposition Techniques, Microstructure and Properties of Nanocrystalline Co-W Alloy Coatings
,”
J. Alloys Compd.
,
557
, pp.
228
238
.
39.
John
,
A.
,
Showket
,
J.
,
Joseph Babu
,
K.
,
Edachery
,
V.
, and
Suvin
,
P. S.
,
2023
, “
Micro-Tribological Characteristics of Ti6Al4V Alloy Subjected to Shot Blasting Surface Treatment Process
,”
Trans. Indian Inst. Met.
,
76
(
9
), pp.
2463
2471
.
40.
Pawlus
,
P.
,
Michalczewski
,
R.
,
Lenart
,
A.
, and
Dzierwa
,
A.
,
2014
, “
The Effect of Random Surface Topography Height on Fretting in Dry Gross Slip Conditions
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
228
(
12
), pp.
1374
1391
.
41.
Lehtovaara
,
A.
, and
Lönnqvist
,
C.
,
2011
, “
Modelling and Analysis of Fretting Wear in Rough Point Contacts in Partial Slip Conditions
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
225
(
10
), pp.
986
998
.
42.
Davim
,
J. P.
,
2011
,
Tribology for Engineers
,
Elsevier
,
Cambridge, UK
.
43.
Horng
,
J. H.
,
Yu
,
C. C.
, and
Chen
,
Y. Y.
,
2022
, “
Tribological Characteristics and Load-Sharing of Point-Contact Interface in Three-Body Mixed Lubrication
,”
ASME J. Tribol.
,
144
(
5
), p.
052201
.
44.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2018
, “
Tribological Properties of Al 7075 Alloy and 7075/Al 2 O 3 Composite Under Two-Body Abrasion: A Statistical Approach
,”
ASME J. Tribol.
,
140
(
5
), p.
051602
.
45.
Do
,
Q.
,
An
,
H.
,
Wang
,
G.
,
Meng
,
G.
,
Wang
,
Y.
,
Liu
,
B.
,
Wang
,
J.
, and
Wang
,
F.
,
2019
, “
Effect of Cupric Sulfate on the Microstructure and Corrosion Behavior of Nickel-Copper Nanostructure Coatings Synthesized by Pulsed Electrodeposition Technique
,”
Corros. Sci.
,
147
, pp.
246
259
.
46.
Li
,
B.
, and
Zhang
,
W.
,
2018
, “
Microstructural, Surface and Electrochemical Properties of Pulse Electrodeposited Ni–W/Si3N4 Nanocomposite Coating
,”
Ceram. Int.
,
44
(
16
), pp.
19907
19918
.
47.
Khorsand
,
S.
,
Raeissi
,
K.
,
Ashrafizadeh
,
F.
, and
Arenas
,
M. A.
,
2015
, “
Relationship Between the Structure and Water Repellency of Nickel-Cobalt Alloy Coatings Prepared by Electrodeposition Process
,”
Surf. Coat. Technol.
,
276
, pp.
296
304
.
48.
Bera
,
P.
,
Seenivasan
,
H.
,
Rajam
,
K. S.
, and
William Grips
,
V. K.
,
2012
, “
Characterization of Amorphous Co-P Alloy Coatings Electrodeposited With Pulse Current Using Gluconate Bath
,”
Appl. Surf. Sci.
,
258
(
24
), pp.
9544
9553
.
You do not currently have access to this content.