Abstract

This study presented the wear behavior of the NiCrBSi/WC composite claddings processed on an AISI 316L steel alloy substrate by laser cladding approach. The scanning electron microscope (SEM) morphology of the claddings has shown excellent substrate–cladding interface bonding, good WC particulate distribution, and no noticeable cracks and voids. The electron dispersion spectroscope (EDS) spectra have confirmed the presence of respective NiCrBSi alloy matrix and WC elements. The XRD spectra have identified various phases and compounds such as gamma-Ni, FeNi3, Ni3B, Cr23C6, Ni3Si, and W2C commonly in all the processed composite claddings. The microhardness of the claddings was measured between 791 and 1086 HV0.2 for increasing the reinforcement WC particulate percentage from 15 wt% to 60 wt%. It is about 470% surface hardness enhancement with the processed composite claddings compared with the substrate alloy. The reinforcement of WC from 15 wt% to 60 wt% with the composite claddings resulted in wear resistance enhancement from 21.85% to 60.64% and the coefficient of friction from 56.87% to 77.92% against the substrate. The wear-rate maps and their respective cladding's worn surface morphology have described the wear mechanisms typically as adhesive, abrasive, oxidation, and delamination. The wear mechanisms are mainly influenced by the WC particulate percentage. The increased WC particulate content has increased the dominance of the abrasive wear mechanism while reducing the window of the adhesive wear mechanism. The windows of various wear mechanisms and their ranges, such as adhesive 0.0033 to 0.028, abrasion 0.010 to 0.067, oxidation 0.012 to 0.093, and delamination 0.015 to 0.120 mm3/m, for NiCrBSi/WC composite claddings comprehensibly represented the wear behavior for the varied conditions of dry sliding wear parameters.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Jeyaprakash
,
N.
,
Yang
,
C.-H.
, and
Sivasankaran
,
S.
,
2019
, “
Laser Cladding Process of Cobalt and Nickel Based Hard-Micron-Layers on 316L-Stainless-Steel-Substrate
,”
Mater. Manuf. Process.
,
35
(
2
), pp.
142
151
.
2.
Morsiya
,
C.
,
2020
, “
A Review on Parameters Affecting Properties of Biomaterial SS 316L
,”
Australian J. Mech. Eng.
,
20
(
3
), pp.
803
813
.
3.
Chen
,
X. H.
,
Lu
,
J.
,
Lu
,
L.
, and
Lu
,
K.
,
2005
, “
Tensile Properties of a Nanocrystalline 316L Austenitic Stainless Steel
,”
Scr. Mater.
,
52
(
10
), pp.
1039
1044
.
4.
Gupta
,
D.
, and
Sharma
,
A. K.
,
2011
, “
Investigation on Sliding Wear Performance of WC10Co2Ni Cladding Developed Through Microwave Irradiation
,”
Wear
,
271
(
9–10
), pp.
1642
1650
.
5.
Schmidt
,
M.
,
Zaeh
,
M. F.
,
Graf
,
T.
, and
Ostendorf
,
A.
,
2011
, “
LiM—Lasers in Manufacturing 2011 Part 1
,”
Phys. Proc.
,
12
(
A
), pp.
8
14
.
6.
Riabkina-Fishman
,
M.
, and
Zahavi
,
J.
,
1999
, “
Review of Laser Alloying and Cladding for Improving Surface Properties
,”
Appl. Surf. Sci.
,
106
, pp.
263
267
.
7.
Komvopoulos
,
K.
, and
Nagarathnam
,
K.
,
1990
, “
Review of Processing and Characterization of Laser-Gladded Coating Materials
,”
ASME J. Eng. Mater. Technol.
,
112
(
2
), pp.
131
143
.
8.
Lo
,
K. H.
,
Cheng
,
F. T.
,
Kwok
,
C. T.
, and
Man
,
H. C.
,
2002
, “
Review of Improvement of Cavitation Erosion Resistance of AISI 316 Stainless Steel by Laser Surface Alloying Using Fine WC Powder
,”
Surf. Coat. Technol.
,
165
(
3
), pp.
258
267
.
9.
Kayali
,
Y.
, and
Talaş
,
Ş.
,
2019
, “
Investigation of Wear and Corrosion Behaviour of AISI 316 L Stainless Steel Coated by ESD Surface Modification
,”
Protect. Met. Phys. Chem. Surf.
,
55
(
6
), pp.
1148
1153
.
10.
Dearnley
,
P. A.
, and
Aldrich-Smith
,
G.
,
2004
, “
Corrosion–Wear Mechanisms of Hard Coated Austenitic 316L Stainless Steels
,”
Wear
,
256
(
5
), pp.
491
499
.
11.
De Las Heras
,
E.
,
Egidi
,
D. A.
,
Corengia
,
P.
,
González-Santamaría
,
D.
,
García-Luis
,
A.
,
Brizuela
,
M.
,
López
,
G. A.
, and
Flores Martinez
,
M.
,
2008
, “
Duplex Surface Treatment of an AISI 316L Stainless Steel; Microstructure and Tribological Behaviour
,”
Surf. Coat. Technol.
,
202
(
13
), pp.
2945
2954
.
12.
Puchi-Cabrera
,
E. S.
,
Staia
,
M. H.
,
Ochoa-Pérez
,
E. A.
,
Teer
,
D. G.
,
Santana-Mendez
,
Y. Y.
,
La Barbera-Sosa
,
J. G.
,
Chicot
,
D.
, and
Lesage
,
J.
,
2010
, “
Fatigue Behavior of a 316L Stainless Steel Coated With a DLC Film Deposited by PVD Magnetron Sputter Ion Plating
,”
Mater. Sci. Eng.: A
,
527
(
3
), pp.
498
508
.
13.
Guo
,
D.
,
Kwok
,
C. T.
, and
Chan
,
S. L. I.
,
2018
, “
Fabrication of Stainless Steel 316L/TiB2 Composite Coating via Friction Surfacing
,”
Surf. Coat. Technol.
,
350
, pp.
936
948
.
14.
Ertugrul
,
O.
,
Enrici
,
T.
,
Paydas
,
H.
,
Saggionetto
,
E.
,
Boschini
,
F.
, and
Mertens
,
A.
,
2020
, “
Laser Cladding of TiC Reinforced 316L Stainless Steel Composites: Feedstock Powder Preparation and Microstructural Evaluation
,”
Powder Technol.
,
375
, pp.
384
396
.
15.
Bansal
,
S.
,
Kaushal
,
S.
,
Mago
,
J.
,
Gupta
,
D.
,
Jain
,
V.
,
Babbar
,
A.
, and
Sharma
,
D.
,
2023
, “
Effect of Variation of WC Reinforcement on Metallurgical and Cavitation Erosion Behavior of Microwave Processed NiCrSiC-WC Composites Clads
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
237
(
22
), pp.
5460
5475
.
16.
Nayak
,
S. K.
,
Kumar
,
A.
,
Pathak
,
A.
,
Banerjee
,
A.
, and
Laha
,
T.
,
2020
, “
Review of Multi-Scale Mechanical Properties of Fe-Based Amorphous/ Nanocrystalline Composite Coating Synthesized by HVOF Spraying
,”
J. Alloys Compd.
,
825
(
5
), p.
154120
.
17.
Pascal
,
D. T.
,
Şerban
,
V. A.
, and
Marginean
,
G.
,
2016
, “
Optimization of Process Parameters for the Manufacturing of High Temperature Vacuum Brazed WC-NiCrBSi Coatings
,”
Solid State Phenom.
,
254
, pp.
164
169
. www.scientific.net/SSP.254.164
18.
Hintermann
,
H. E.
,
2002
, “
Review of Tribological and Protective Coatings by Chemical Vapour Deposition
,”
Thin Solid Films
,
84
(
3
), pp.
215
243
.
19.
Bochenek
,
B.
,
Węglewski
,
W.
,
Strojny-Nędza
,
A.
,
Pietrzak
,
K.
,
Chmielewski
,
T.
,
Chmielewski
,
M.
, and
Basista
,
M.
,
2022
, “
Microstructure, Mechanical, and Wear Properties of NiCr-Re-Al2O3 Coatings Deposited by HVOF, Atmospheric Plasma Spraying, and Laser Cladding
,”
J. Therm. Spray Technol.
,
31
(
5
), pp.
1609
1633
.
20.
Chen
,
X.
,
Qin
,
X.
,
Zhu
,
Z.
, and
Gao
,
K.
,
2018
, “
Microstructural Evolution and Wear Properties of the Continual Local Induction Cladding NiCrBSi Coatings
,”
J. Mater. Process. Technol.
,
262
, pp.
257
268
.
21.
Paul
,
C. P.
,
Gandhi
,
B. K.
,
Bhargava
,
P.
,
Dwivedi
,
D. K.
, and
Kukreja
,
L. M.
,
2014
, “
Cobalt-Free Laser Cladding on AISI Type 316L Stainless Steel for Improved Cavitation and Slurry Erosion Wear Behavior
,”
J. Mater. Eng. Perform.
,
23
(
12
), pp.
4463
4471
.
22.
Kumar
,
J. K.
,
Rao
,
T. B.
, and
Krishna
,
K. R.
,
2023
, “
The Microstructural Properties and Tribological Performance of Al2O3 and TiN Nanoparticles Reinforced Ti–6Al–4V Composite Coating Deposited on AISI304 Steel by TIG Cladding
,”
ASME J. Tribol.
,
145
(
1
), p.
011401
.
23.
Rachidi
,
R.
,
El Kihel
,
B.
, and
Delaunois
,
F.
,
2019
, “
Microstructure and Mechanical Characterization of NiCrBSi Alloy and NiCrBSi-WC Composite Coatings Produced by Flame Spraying
,”
Mater. Sci. Eng.: B
,
241
, pp.
13
21
.
24.
Eboo
,
G. M.
, and
Blake
,
A. G.
,
2015
, “
Laser Cladding of Gas Turbine Components
,”
Proc. ASME Turbo Expo
,
5
(, pp.
291
298
.
25.
Hebbale
,
A. M.
, and
Srinath
,
M. S.
,
2016
, “
Microstructural Investigation of Ni Based Cladding Developed on Austenitic SS-304 Through Microwave Irradiation
,”
J. Mater. Res. Technol.
,
5
(
4
), pp.
293
301
.
26.
Paulo
,
D. J.
,
Oliveira
,
C.
, and
Cardoso
,
A.
,
2006
, “
Laser Cladding: An Experimental Study of Geometric Form and Hardness of Coating Using Statistical Analysis
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
220
(
9
), pp.
1549
1554
.
27.
Parekh
,
R.
,
Buddu
,
R. K.
, and
Patel
,
R. I.
,
2016
, “
Multiphysics Simulation of Laser Cladding Process to Study the Effect of Process Parameters on Clad Geometry
,”
Proc. Technol.
,
23
(
1
), pp.
529
536
.
28.
Guofu
,
L.
,
Xiao
,
S.
,
Zhang
,
Y.
,
Jiang
,
J.
, and
Zhan
,
Y.
,
2021
, “
Multi-Objective Optimization of Coating Properties and Cladding Efficiency in 316L/WC Composite Laser Cladding Based on Grey Relational Analysis
,”
Int. J. Adv. Manuf. Technol.
,
112
(
5–6
), pp.
1449
1459
.
29.
Sexton
,
L.
,
Lavin
,
S.
,
Byrne
,
G.
, and
Kennedy
,
A.
,
2001
, “
Laser Cladding of Aerospace Materials
,”
J. Mater. Process. Technol.
,
22
(
1
), pp.
63
68
.
30.
Kumar
,
A.
, and
Das
,
A. K.
,
2020
, “
Evolution of Microstructure and Mechanical Properties of Co-SiC Tungsten Inert Gas Cladded Coating on 304 Stainless Steel
,”
Eng. Sci. Technol. Int. J.
,
24
(
3
), pp.
591
604
.
31.
Sharifitabar
,
M.
,
Vahdati Khaki
,
J.
, and
Haddad Sabzevar
,
M.
,
2016
, “
Microstructure and Wear Resistance of in-Situ TiC-Al2O3 Particles Reinforced Fe-Based Coatings Produced by Gas Tungsten arc Cladding
,”
Surf. Coat. Technol.
,
285
, pp.
47
56
.
32.
Sharma
,
S. P.
,
Dwivedi
,
D. K.
, and
Jain
,
P. K.
,
2009
, “
Effect of La2O3 Addition on the Microstructure, Hardness and Abrasive Wear Behavior of Flame Sprayed Ni Based Coatings
,”
Wear
,
267
(
5–8
), pp.
853
859
.
33.
Flores
,
J. F.
,
Neville
,
A.
,
Kapur
,
N.
, and
Gnanavelu
,
A.
,
2009
, “
An Experimental Study of the Erosion-Corrosion Behavior of Plasma Transferred Arc MMCs
,”
Wear
,
267
(
1–4
), pp.
213
222
.
34.
Rodríguez
,
J.
,
Martín
,
A.
,
Fernández
,
R.
, and
Fernández
,
J. E.
,
2003
, “
An Experimental Study of the Wear Performance of NiCrBSi Thermal Spray Coatings
,”
Wear
,
255
(
7–12
), pp.
950
955
.
35.
Chaliampalias
,
D.
,
Vourlias
,
G.
,
Pavlidou
,
E.
,
Skolianos
,
S.
,
Chrissafis
,
K.
, and
Stergioudis
,
G.
,
2009
, “
Comparative Examination of the Microstructure and High Temperature Oxidation Performance of NiCrBSi Flame Sprayed and Pack Cementation Coatings
,”
Appl. Surf. Sci.
,
255
(
6
), pp.
3605
3612
.
36.
Chen
,
L.-Y.
,
Wang
,
H.
,
Zhao
,
C.
,
Lu
,
S.
,
Wang
,
Z.-X.
,
Sha
,
J.
,
Chen
,
S.
, and
Zhang
,
L.-C.
,
2019
, “
Automatic Remelting and Enhanced Mechanical Performance of a Plasma Sprayed NiCrBSi Coating
,”
Surf. Coat. Technol.
,
369
, pp.
31
43
.
37.
Grigorescu
,
I. C.
,
Di Rauso
,
C.
,
Drira-Halouani
,
R.
,
Lavelle
,
B.
,
Di Giampaolo
,
R.
, and
Lira
,
J.
,
1995
, “
Phase Characterization in Ni Alloy-Hard Carbide Composites for Fused Coatings
,”
Surf. Coat. Technol.
,
76–77
(
2
), pp.
494
498
.
38.
Tobar
,
M. J.
,
Álvarez
,
C.
,
Amado
,
J. M.
,
Rodríguez
,
G.
, and
Yáñez
,
A.
,
2006
, “
Morphology and Characterization of Laser Clad Composite NiCrBSi-WC Coatings on Stainless Steel
,”
Surf. Coat. Technol.
,
200
(
22–23
), pp.
6313
6317
.
39.
Xu
,
J.-S.
,
Zhang
,
X.-C.
,
Xuan
,
F.
,
Tian
,
F.-Q.
,
Wang
,
Z.-D.
, and
Tu
,
S. T.
,
2013
, “
Tensile Properties and Fracture Behavior of Laser Cladded WC/Ni Composite Coatings With Different Contents of WC Particle Studied by In-Situ Tensile Testing
,”
Mater. Sci. Eng.
,
560
, pp.
744
751
.
40.
Guo
,
C.
,
Zhou
,
J.
,
Chen
,
J.
,
Zhao
,
J.
,
Yu
,
Y.
, and
Zhou
,
H.
,
2011
, “
High Temperature Wear Resistance of Laser Cladding NiCrBSi and NiCrBSi/WC-Ni Composite Coatings
,”
Wear
,
270
(
7–8
), pp.
492
498
.
41.
Sun
,
R. L.
,
Lei
,
Y. W.
, and
Niu
,
W.
,
2009
, “
Laser Clad TiC Reinforced NiCrBSi Composite Coatings on Ti-6Al-4V Alloy Using a CW CO2 Laser
,”
Surf. Coat. Technol.
,
203
(
10–11
), pp.
1395
1399
.
42.
Meng
,
Q. W.
,
Geng
,
L.
, and
Zhang
,
B. Y.
,
2006
, “
Laser Cladding of Ni-Base Composite Coatings Onto Ti-6Al-4V Substrates With Pre-Placed B4C + NiCrBSi Powders
,”
Surf. Coat. Technol.
,
200
(
16–17
), pp.
4923
4928
.
43.
Chen
,
J.
,
Dong
,
Y.
,
Wan
,
L.
,
Yang
,
Y.
,
Chu
,
Z.
,
Zhang
,
J.
,
He
,
J.
, and
Li
,
D.
,
2018
, “
Effect of Induction Remelting on the Microstructure and Properties of In Situ TiN-Reinforced NiCrBSi Composite Coatings
,”
Surf. Coat. Technol.
,
340
, pp.
159
166
.
44.
Wang
,
Y.
,
Stella
,
J.
,
Darut
,
G.
,
Poirier
,
T.
,
Liao
,
H.
, and
Planche
,
M.-P.
,
2017
, “
APS Prepared NiCrBSi-YSZ Composite Coatings for Protection Against Cavitation Erosion
,”
J. Alloys Compd.
,
699
, pp.
1095
1103
.
45.
Sheppard
,
P.
, and
Koiprasert
,
H.
,
2014
, “
Effect of W Dissolution in NiCrBSi-WC and NiBSi-WC Arc Sprayed Coatings on Wear Behaviors
,”
Wear
,
317
(
1–2
), pp.
194
200
.
46.
Luo
,
X.
,
Li
,
J.
, and
Li
,
G. J.
,
2015
, “
Effect of NiCrBSi Content on Microstructural Evolution, Cracking Susceptibility and Wear Behaviors of Laser Cladding WC/Ni-NiCrBSi Composite Coatings
,”
J. Alloys Compd.
,
626
, pp.
102
111
.
47.
Deschuyteneer
,
D.
,
Petit
,
F.
,
Gonon
,
M.
, and
Cambier
,
F.
,
2017
, “
Influence of Large Particle Size—up to 1.2 mm—and Morphology on Wear Resistance in NiCrBSi/WC Laser Cladded Composite Coatings
,”
Surf. Coat. Technol.
,
311
, pp.
365
373
.
48.
Rachidi
,
R.
,
El Kihel
,
B.
,
Delaunois
,
F.
,
Vitry
,
V.
, and
Deschuyteneer
,
D.
,
2017
, “
Wear Performance of Thermally Sprayed NiCrBSi and NiCrBSi-WC Coatings
,”
J. Mater. Environ. Sci.
,
8
(
12
), pp.
4550
4559
.
49.
Hofman
,
J. T.
,
de Lange
,
D. F.
,
Pathiraj
,
B.
, and
Meijer
,
J.
,
2011
, “
FEM Modeling and Experimental Verification for Dilution Control in Laser Cladding
,”
J. Mater. Process. Technol.
,
211
(
2
), pp.
187
196
.
50.
Vostřák
,
M.
,
Houdková
,
Š
,
Bystrianský
,
M.
, and
Česánek
,
Z.
,
2018
, “
The Influence of Process Parameters on Structure and Abrasive Wear Resistance of Laser Clad WC-NiCrBSi Coatings
,”
Mater. Res. Express
,
5
(
9
), p.
096521
.
51.
Paulo Davim
,
J.
,
Oliveira
,
C.
, and
Cardoso
,
A.
,
2008
, “
Predicting the Geometric Form of Clad in Laser Cladding by Powder Using Multiple Regression Analysis (MRA)
,”
Mater. Des.
,
29
(
2
), pp.
554
557
.
52.
Onwubolu
,
G. C.
,
Davim
,
J. P.
,
Oliveira
,
C.
, and
Cardoso
,
A.
,
2007
, “
Prediction of Clad Angle in Laser Cladding by Powder Using Response Surface Methodology and Scatter Search
,”
Opt. Laser Technol.
,
39
(
6
), pp.
1130
1134
.
53.
Perrin
,
T.
,
Achache
,
S.
,
Meausoone
,
P.-J.
, and
Sanchette
,
F.
,
2021
, “
Characterization of WC-Doped NiCrBSi Coatings Deposited by Laser Cladding; Effects of Particle Size and Content of WC Powder
,”
Surf. Coat. Technol.
,
425
, p.
127703
.
54.
García
,
A.
,
Fernández
,
M. R.
,
Cuetos
,
J. M.
,
González
,
R.
,
Ortiz
,
A.
, and
Cadenas
,
M.
,
2016
, “
Study of the Sliding Wear and Friction Behavior of WC + NiCrBSi Laser Cladding Coatings as a Function of Actual Concentration of WC Reinforcement Particles in Ball-on-Disk Test
,”
Tribol. Lett.
,
63
(
41
), pp.
1
10
.
55.
Panziera
,
R. C.
,
Pereira
,
M.
,
de Medeiros Castro
,
R.
,
Curi
,
E. I. M.
, and
Neto
,
F. G.
,
2023
, “
Effect of Tungsten Carbide Reinforcement Phase on the Abrasive Wear Performance of Metal Matrix Composites Deposited by Laser Cladding
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
45
(
11
), pp.
1
21
.
56.
Kalyankar
,
V. D.
, and
Wanare
,
S. P.
,
2022
, “
Comparative Investigations on Microstructure and Slurry Abrasive Wear Resistance of NiCrBSi and NiCrBSi-WC Composite Hard Facings Deposited on 304 Stainless Steel
,”
Tribol. Ind.
,
44
(
2
), pp.
199
211
.
57.
Shen
,
X.
,
He
,
X.
,
Gao
,
L.
,
Su
,
G.
,
Xu
,
C.
, and
Xu
,
N.
,
2022
, “
Study on Crack Behavior of Laser Cladding Ceramic-Metal Composite Coating With High Content of WC
,”
Ceram. Int.
,
48
(
12
), pp.
17460
17470
.
58.
Guo
,
C.
,
Chen
,
J.
,
Zhou
,
J.
,
Zhao
,
J.
,
Wang
,
L.
,
Yu
,
Y.
, and
Zhou
,
H.
,
2012
, “
Effects of WC-Ni Content on Microstructure and Wear Resistance of Laser Cladding Ni-Based Alloys Coating
,”
Surf. Coat. Technol.
,
206
(
8–9
), pp.
2064
2071
.
59.
Sun
,
G. F.
,
Zhang
,
Y. K.
,
Zhang
,
M. K.
,
Zhou
,
R.
,
Wang
,
K.
,
Liu
,
C. S.
, and
Luo
,
K. Y.
,
2014
, “
Microstructure and Corrosion Characteristics of 304 Stainless Steel Laser-Alloyed With Cr-CrB2
,”
Appl. Surf. Sci.
,
295
, pp.
94
107
.
60.
Singh
,
S.
,
Goyal
,
D. K.
,
Kumar
,
P.
, and
Bansal
,
A.
,
2022
, “
Influence of Laser Cladding Parameters on Slurry Erosion Performance of NiCrSiBC + 50WC Claddings
,”
Int. J. Refract. Mater. Hard Mater.
,
105
, p.
105825
.
61.
Farayibi
,
P. K.
,
Murray
,
J. W.
,
Huang
,
L.
,
Boud
,
F.
,
Kinnell
,
P. K.
, and
Clare
,
A. T.
,
2014
, “
Erosion Resistance of Laser Clad Ti-6Al-4V/WC Composite for Waterjet Tooling
,”
J. Mater. Process. Technol.
,
214
(
3
), pp.
710
721
.
62.
Yi
,
J.
,
Niu
,
B.
,
Pan
,
L.
,
Zou
,
X.
,
Cao
,
Y.
,
Wang
,
X.
,
Luo
,
J.
, and
Hu
,
Y.
,
2022
, “
Influence of WC Grain Size on the Microstructure and Wear Property Enhancement of 18Ni300 Coatings
,”
Surf. Coat. Technol.
,
447
, p.
128823
.
63.
Abioye
,
T. E.
,
Farayibi
,
P. K.
,
McCartney
,
D. G.
, and
Clare
,
A. T.
,
2016
, “
Effect of Carbide Dissolution on the Corrosion Performance of Tungsten Carbide Reinforced Inconel 625 Wire Laser Coating
,”
J. Mater. Process. Technol.
,
231
, pp.
89
99
.
64.
Wang
,
X.
,
Zhou
,
S.
,
Dai
,
X.
,
Lei
,
J.
,
Guo
,
J.
,
Gu
,
Z.
, and
Wang
,
T.
,
2017
, “
Evaluation and Mechanisms on Heat Damage of WC Particles in Ni60/WC Composite Coatings by Laser Induction Hybrid Cladding
,”
Int. J. Refract. Mater. Hard Mater.
,
64
, pp.
234
241
.
65.
Gowtham
,
A.
,
Chaitanya
,
G.
,
Katiyar
,
J. K.
,
Chandak
,
A.
, and
Gupta
,
T. V. K.
,
2019
, “
Experimental Investigations on Laser Cladding of NiCrBSi + WC Coating on SS410
,”
Mater. Today Proc.
,
27
(
3
), pp.
1984
1989
.
66.
Fernández
,
M. R.
,
García
,
A.
,
Cuetos
,
J. M.
,
González
,
R.
,
Noriega
,
A.
, and
Cadenas
,
M.
,
2015
, “
Effect of Actual WC Content on the Reciprocating Wear of a Laser Cladding NiCrBSi Alloy Reinforced With WC
,”
Wear
,
324–325
, pp.
80
89
.
67.
Deschuyteneer
,
D.
,
Petit
,
F.
,
Gonon
,
M.
, and
Cambier
,
F.
,
2015
, “
Processing and Characterization of Laser Clad NiCrBSi/WC Composite Coatings—Influence of Microstructure on Hardness and Wear
,”
Surf. Coat. Technol.
,
283
, pp.
162
171
.
68.
Lai
,
Q.
,
Abrahams
,
R.
,
Yan
,
W.
,
Qiu
,
C.
,
Mutton
,
P.
,
Paradowska
,
A.
,
Soodi
,
M.
, and
Wu
,
X.
,
2019
, “
Influences of Depositing Materials, Processing Parameters and Heating Conditions on Material Characteristics of Laser-Cladded Hypereutectoid Rails
,”
J. Mater. Process. Technol.
,
263
, pp.
1
20
.
69.
Viáfara
,
C. C.
, and
Sinatora
,
A.
,
2009
, “
Influence of Hardness of the Harder Body on Wear Regime Transition in a Sliding Pair of Steels
,”
Wear
,
267
(
1–4
), pp.
425
432
.
70.
Tjong
,
S. C.
, and
Lau
,
K. C.
,
1999
, “
Sliding Wear of Stainless Steel Matrix Composite Reinforced With TiB2 Particles
,”
Mater. Lett.
,
41
(
4
), pp.
153
158
.
71.
Dou
,
Y.
,
Liu
,
Y.
,
Liu
,
Y.
,
Xiong
,
Z.
, and
Xia
,
Q.
,
2014
, “
Friction and Wear Behaviors of B4C/6061Al Composite
,”
Mater. Des.
,
60
, pp.
669
677
.
72.
Paulo Davim
,
J.
,
2017
, “Progress in Green Tribology,”
Volume 2 in the Series Advanced Mechanical Engineering
,
De Gruyter
.
73.
Paulo Davim
,
J.
,
2013
, “Wear of Advanced Materials,”
Wear of Advanced Materials
,
Wiley
,
New York
.
74.
Cai
,
X.
,
Wang
,
H.
,
Xu
,
Y.
,
Cao
,
B.
,
Liu
,
M.
, and
Li
,
X.
,
2021
, “
Room-Temperature Wear Resistance of Tungsten Carbide Composite Layers Produced on Grey Cast Iron by Diffusion-Controlled in Situ Reactions
,”
Surf. Coat. Technol.
,
424
, p.
127649
.
You do not currently have access to this content.