Abstract

The purpose of this study is to assess the role of turbulence on the lubrication performances of coupled journal-thrust water-lubricated bearing with micro grooves using a numerical model. The results of the simulation model are compared to the published experimental data to verify the validity of the numerical model. The load capacity, maximum film pressure, and local Reynolds number variations with the rotating speed, eccentricity, radial clearance, axial geometric gap, and micro groove depth for coupled journal-thrust water-lubricated bearing are examined. Furthermore, the calculated results under the turbulent flow are compared with those under laminar flow for coupled and separate bearings. The results show that the turbulence effect can improve the lubrication performances by enlarging fluid pressure and load capacity of the coupled journal-thrust bearing and the laminar flow assumption is no longer applicable to the actual operating conditions of the water-lubricated bearings at a high rotation speed. In addition, optimal micro groove depths for both journal bearing and thrust bearing exist to reach the peak of the load capacity while the optimal micro groove depths for journal bearing and thrust bearing are not the same.

References

1.
Yan
,
X.-p.
,
Liang
,
X.
,
Wu
,
O.
,
Liu
,
Z.
,
Bao
,
L.
, and
Jiafen
,
L.
,
2017
, “
A Review of Progress and Applications of Ship Shaft-Less rim-Driven Thrusters
,”
Ocean Eng.
,
144
, pp.
142
156
.
2.
Cai
,
J.
,
Xiang
,
G.
,
Li
,
S.
,
Guo
,
J.
,
Wang
,
J.
,
Chen
,
S.
, and
Yang
,
T.
,
2022
, “
Mathematical Modeling for Nonlinear Dynamic Mixed Friction Behaviors of Novel Coupled Bearing Lubricated With low-Viscosity Fluid
,”
Phys. Fluids
,
34
(
9
), p.
093612
.
3.
Wang
,
Y.
,
Wang
,
Q. J.
, and
Lin
,
C.
,
2002
, “
Mixed Lubrication of Coupled Journal-Thrust Bearing Systems
,”
Comput. Model. Eng. Sci.
,
3
(
4
), pp.
517
530
.
4.
Wang
,
Y.
,
Wang
,
Q. J.
, and
Lin
,
C.
,
2003
, “
Mixed Lubrication of Coupled Journal-Thrust-Bearing Systems Including Mass Conserving Cavitation
,”
ASME J. Tribol.
,
125
(
4
), pp.
747
755
.
5.
Wang
,
Y.
,
Wang
,
Q. J.
, and
Lin
,
C.
,
2006
, “
A Mixed-EHL Analysis of Effects of Misalignments and Elastic Deformations on the Performance of a Coupled Journal-Thrust Bearing System
,”
Tribol. Int.
,
39
(
4
), pp.
281
289
.
6.
Jang
,
G.
,
Lee
,
S.-H.
, and
Kim
,
H.
,
2006
, “
Finite Element Analysis of the Coupled Journal and Thrust Bearing in a Computer Hard Disk Drive
,”
ASME J. Tribol.
,
128
(
2
), pp.
335
340
.
7.
Kim
,
M. G.
,
Jang
,
G.
, and
Kim
,
H.
,
2010
, “
Stability Analysis of a Disk-Spindle System Supported by Coupled Journal and Thrust Bearings Considering Five Degrees of Freedom
,”
Tribol. Int.
,
43
(
8
), pp.
1479
1490
.
8.
Kim
,
H.
,
Jang
,
G.
, and
Lee
,
S.
,
2011
, “
Complete Determination of the Dynamic Coefficients of Coupled Journal and Thrust Bearings Considering Five Degrees of Freedom for a General Rotor-Bearing System
,”
Microsyst. Technol.
,
17
(
5–7
), pp.
749
759
.
9.
Kim
,
K.
,
Lee
,
M.
,
Lee
,
S.-m.
, and
Jang
,
G.
,
2017
, “
Optimal Design and Experimental Verification of Fluid Dynamic Bearings With High Load Capacity Applied to an Integrated Motor Propulsor in Unmanned Underwater Vehicles
,”
Tribol. Int.
,
114
, pp.
221
233
.
10.
Xiang
,
G.
,
Han
,
Y. F.
,
Chen
,
R.
,
Jiaxu Wang
,
J. W.
, and
Xiaokang
,
N.
,
2019
, “
A Numerical Method to Investigate the Mixed Lubrication Performances of Journal-Thrust Coupled Bearings
,”
Ind. Lubr. Tribol.
,
71
(
9
), pp.
1099
1107
.
11.
Xiang
,
G.
,
Wang
,
J.
,
Zhou
,
C. D.
,
Shi
,
Y.
,
Wang
,
Y.
,
Cai
,
J.
,
Wang
,
C.
,
Jin
,
D.
, and
Han
,
Y. F.
,
2021
, “
A Tribo-Dynamic Model of Coupled Journal-Thrust Water-Lubricated Bearings Under Propeller Disturbance
,”
Tribol. Int.
,
160
, p.
107008
.
12.
Ng
,
C.
, and
Pan
,
C. H. T.
,
1965
, “
A Linearized Turbulent Lubrication Theory
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
675
688
.
13.
Wang
,
J. K.
, and
Khonsari
,
M. M.
,
2006
, “
Application of Hopf Bifurcation Theory to Rotor-Bearing Systems With Consideration of Turbulent Effects
,”
Tribol. Int.
,
39
(
7
), pp.
701
714
.
14.
Luan
,
Z.
, and
Khonsari
,
M. M.
,
2007
, “
Computational Fluid Dynamics Analysis of Turbulent Flow Within a Mechanical Seal Chamber
,”
ASME J. Tribol.
,
129
(
1
), pp.
120
128
.
15.
Wang
,
X.
,
Zhang
,
Z.
, and
Sun
,
M.
,
2000
, “
A Comparison of Flow Fields Predicted by Various Turbulent Lubrication Models With Existing Measurements
,”
ASME J. Tribol.
,
122
(
2
), pp.
475
477
.
16.
Xu
,
G. H.
,
Zhou
,
J.
,
Geng
,
H.
,
Lu
,
M.
,
Yang
,
L.
, and
Yu
,
L.
,
2015
, “
Research on the Static and Dynamic Characteristics of Misaligned Journal Bearing Considering the Turbulent and Thermohydrodynamic Effects
,”
ASME J. Tribol.
,
137
(
2
), p.
024504
.
17.
Bi
,
C.
,
Han
,
D.
,
Wu
,
Y.
,
Li
,
Y.
, and
Yang
,
J.
,
2021
, “
Thermohydrodynamic Investigation for Supercritical Carbon Dioxide High Speed Tilting Pad Bearings Considering Turbulence and Real Gas Effect
,”
Phys. Fluids
,
33
(
12
), p.
125114
.
18.
Ladeinde
,
F.
, and
Oh
,
H.
,
2021
, “
Stochastic and Spectra Contents of Detonation Initiated by Compressible Turbulent Thermodynamic Fluctuations
,”
Phys. Fluids
,
33
(
4
), p.
045111
.
19.
Du
,
Y.
,
Lan
,
J.
,
Quan
,
H.
,
Sun
,
C.
,
Liu
,
X.
, and
Yang
,
X. F.
,
2021
, “
Effect of Different Turbulent Lubrication Models on the Lubrication Characteristics of Water-Lubricated Rubber Bearings at a High Reynolds Number
,”
Phys. Fluids
,
33
(
6
), p.
065118
.
20.
Liu
,
G.
, and
Li
,
M.
,
2021
, “
Experimental Study on the Lubrication Characteristics of Water-Lubricated Rubber Bearings at High Rotating Speeds
,”
Tribol. Int.
,
157
, p.
106868
.
21.
Qiao
,
J.
,
Zhou
,
G.
,
Pu
,
W.
,
Li
,
R.
, and
He
,
M.
,
2022
, “
Coupling Analysis of Turbulent and Mixed Lubrication of Water-Lubricated Rubber Bearings
,”
Tribol. Int.
,
172
, p.
107644
.
22.
Lv
,
F.
,
Shangguan
,
Y.
,
Zou
,
D.
, and
Ji
,
A.
,
2022
, “
Transient Mixed-Lubrication Analysis of Low-Viscosity Lubricated Bearings Under Impact Load With Consideration of Turbulence
,”
Phys. Fluids
,
34
(
3
), p.
033108
.
23.
Song
,
Z.
,
Guo
,
F.
,
Liu
,
Y.
,
Hu
,
S.
,
Liu
,
X.
, and
Wang
,
Y.
,
2017
, “
Investigation of Slip/No-Slip Surface for Two-Dimensional Large Tilting pad Thrust Bearing
,”
Ind. Lubr. Tribol.
,
69
(
6
), pp.
995
1004
.
24.
Xie
,
Z.
,
Jiao
,
J.
, and
Yang
,
K.
,
2022
, “
Theoretical and Experimental Study on the Fluid-Structure-Acoustic Coupling Dynamics of a New Water Lubricated Bearing
,”
Tribol. Int.
,
177
, p.
107982
.
25.
Lin
,
X.
,
Jiang
,
S.
,
Zhang
,
C.
, and
Liu
,
X.
,
2018
, “
Thermohydrodynamic Analysis of High Speed Water-Lubricated Spiral Groove Thrust Bearing Considering Effects of Cavitation, Inertia and Turbulence
,”
Tribol. Int.
,
119
, pp.
645
658
.
26.
Lin
,
X.
,
Jiang
,
S.
,
Zhang
,
C.
, and
Liu
,
X.
,
2018
, “
Thermohydrodynamic Analysis of High Speed Water-Lubricated Spiral Groove Thrust Bearing Using Cavitating Flow Model
,”
ASME J. Tribol.
,
140
(
5
), p.
051703
.
27.
Feng
,
H.
, and
Peng
,
L.
,
2018
, “
Numerical Analysis of Water-Lubricated Thrust Bearing With Groove Texture Considering Turbulence and Cavitation
,”
Ind. Lubr. Tribol.
,
70
(
6
), pp.
1127
1136
.
28.
Taylor
,
G. I. S.
,
1923
, “
Stability of a Viscous Liquid Contained Between Two Rotating Cylinders
,”
Philos. Trans. Royal Soc. A
,
223
(
605–615
), pp.
289
343
.
29.
Woodward
,
W. S.
, and
Paul
,
B.
,
1976
, “
Contact Stresses for Closely Conforming Bodies–Application to Cylinders and Spheres
”.
30.
Fowell
,
M. T.
,
Olver
,
A. V.
,
Gosman
,
A. D.
,
Spikes
,
H. A.
, and
Pegg
,
I. G.
,
2007
, “
Entrainment and Inlet Suction: Two Mechanisms of Hydrodynamic Lubrication in Textured Bearings
,”
ASME J. Tribol.
,
129
(
2
), pp.
336
347
.
31.
Hashimoto
,
H.
,
1997
, “
Surface Roughness Effects in High-Speed Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
119
(
4
), pp.
776
780
.
32.
Frěne
,
J.
,
1978
, “
Tapered Land Thrust Bearing Operating in Both Laminar and Turbulent Regimes
,”
Tribol. T.
,
21
(
3
), pp.
243
249
.
You do not currently have access to this content.