Abstract
A novel planar ball reducer (NPBR) is invented in which the relative velocity of meshing surfaces is reduced to achieve high mechanical efficiency. In order to acquire an accurate quantitative analysis on the efficiency of a ball reducer, thorough comprehension of the reducer’s tribological behavior is required. To this end, the elastohydrodynamic lubrication (EHL) theory, for the first time, is used to reveal the tribological behavior of the planer ball reducer, and the equations of kinematics, EHL model, and theoretical efficiency of the transmission system are derived. The prototype of NPBR is developed, and its experimental efficiency is measured, which agrees well with the theoretical efficiency.
Issue Section:
Hydrodynamics and Elastohydrodynamic Lubrication
References
1.
Aliyev
, A.
, and Qasimova
, A.
, 2021
, “Perspectives of Cycloid Transmission
,” ETM—Equipment, Technol. Mater.
, 5
(1
), pp. 72
–80
. 2.
Terada H
, I. K.
, 2009
, “Fundamental Analysis of a Cycloid Ball Reducer (5th Report)-Development of a Two Stage Type Reduction Mechanism
,” JSPE
, 75
(12
), pp. 1418
–1422
.3.
Terada
, H.
, 2010
, “The Development of Gearless Reducers With Rolling Balls
,” J. Mech. Sci. Technol.
, 24
(1
), pp. 189
–195
. 4.
Blagojević
, M.
, Matejić
, M.
, and Kostić
, N.
, 2018
, “Dynamic Behaviour of a Two-Stage Cycloidal Speed Reducer of a New Design Concept
,” Teh. Vjesn.
, 25
(2
), pp. 291
–298
.5.
Sato
, D.
, and Hasegawa
, S.
, 2015
, “1P1-C07 Prototype Design of a Small and Quiet Cyclo Reducer With Eccentric Input by Planetary Gear Mechanism Using Rubber Roller
,” Proceedings of JSME Annual Conference on Robotics and Mechatronics
, Kyoto, Japan
, May 17–19
, pp. 1
–3
.6.
Xu
, L.
, and Yang
, J.
, 2018
, “Vibration Analysis of a Two-Step Sine Movable Tooth Drive
,” Shock Vib.
, 2018
, p. 4205273
.7.
Xu
, L.
, and Men
, M.
, 2019
, “Meshing Efficiency for Sinusoidal Movable Tooth Drive
,” J. Adv. Mech. Des. Syst. Manuf.
, 13
(4
), pp. 1
–11
.8.
Xu
, L.
, and Wang
, W.
, 2019
, “Natural Frequency and Modes for a Sine Movable Tooth Drive
,” Iran. J. Sci. Technol.—Trans. Mech. Eng.
, 43
(s1
), pp. 267
–273
. 9.
Ma
, P.
, Xing
, J.
, and Xu
, L.
, 2022
, “Forces and Stress for a Two-Stage Planar Sine-Wave Movable Tooth Drive
,” Mech. Based Des. Struct. Mach.
, 50
(3
), pp. 858
–876
. 10.
Xu
, L.
, and Yang
, X.
, 2021
, “Relative Velocity and Meshing Efficiency for a Novel Planar Ball Reducer
,” Mech. Mach. Theory
, 155
, p. 104057
. 11.
Duan
, L.
, An
, Z.
, Yang
, R.
, and Fu
, Z.
, 2016
, “Mechanical Model of Coupling Rolling and Sliding Friction in Real-Time Non-Clearance Precision Ball Transmission
,” Tribol. Int.
, 103
, pp. 218
–227
. 12.
Chen
, S.
, and Zhang
, J.
, 2004
, “Elastohydrodynamic Lubrication Analysis on Swing Movable Teeth Transmission
,” J. Mechine Des.
, 21
(3
), pp. 46
–48
.13.
Zhang Fujun
, L. l.
, 2005
, “Lubrication Performance and Influencing Factors Analysis of Swing Movable Tooth Transmission
,” Lubr. Seal.
, (3
), pp. 64
–67
.14.
Deng
, Z.
, and Zhang
, J.
, 2007
, “Multi-Objective Optimization Design of Swing Movable Tooth Transmission Considering Lubrication State
,” Mech. Transm.
, 31
(2
), pp. 45
–48
. +108.15.
Hamrock
, B. J.
, and Dowson
, D.
, 1982
, “Ball Bearing Lubrication: The Elastohydrodynamics of Elliptical Contacts
,” New York Wiley
, 104
(2
), pp. 279
–281
.16.
Liang
, S.
, Li
, H.
, and W
, X.
, 2006
, “Numerical Calculation and Analysis for the Elastohydrodynamic Lubrication of Swing Movable Teeth Transmission
,” J. Sichuan Univ. Eng. Sci. Ed.
, 38
(6
), pp. 135
–139
.17.
Liang
, S.
, Zhang
, J.
, and Yao
, J.
, 2013
, “Friction Power Loss of Swing Movable Teeth Transmission Under Elastohydrodynamic Lubrication
,” Xinan Jiaotong Daxue Xuebao/J. Southwest Jiaotong Univ.
, 48
(6
), pp. 1104
–1109
.18.
Liang
, S. M.
, Zhang
, J.
, and He
, F. F.
, 2013
, “Study on Flash Temperature of Swing Movable Teeth Transmission
,” Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/J. Sichuan Univ. (Engineering Sci. Ed.)
, 45
(2
), pp. 176
–181
.19.
Blok
, H.
, 1963
, “The Flash Temperature Concept
,” Wear
, 6
(6
), pp. 483
–494
. 20.
Kakoi
, K.
, 2021
, “Formulation to Calculate Isothermal, Non-Newtonian Elastohydrodynamic Lubrication Problems Using a Pressure Gradient Coordinate System and Its Verification by an Experimental Grease
,” Lubricants
, 9
(56
), p. 9050056
.21.
Pu
, W.
, Zhu
, D.
, and Wang
, J.
, 2014
, “A Theoretical Analysis of the Mixed Elastohydrodynamic Lubrication in Elliptical Contacts With an Arbitrary Entrainment
,” Soc. Tribol. Lubr. Eng. Annu. Meet. Exhib.
, 2014
(136
), pp. 78
–80
.22.
He
, T.
, Wang
, J.
, Wang
, Z.
, and Zhu
, D.
, 2015
, “Simulation of Plasto-Elastohydrodynamic Lubrication in Line Contacts of Infinite and Finite Length
,” ASME J. Tribol.
, 137
(4
), p. 041505
. 23.
Cao
, W.
, Pu
, W.
, Wang
, J.
, and Xiao
, K.
, 2018
, “Effect of Contact Path on the Mixed Lubrication Performance, Friction and Contact Fatigue in Spiral Bevel Gears
,” Tribol. Int.
, 123
, pp. 359
–371
. 24.
Dong
, Q.
, Wang
, Z.
, Zhu
, D.
, Meng
, F.
, Xu
, L.
, and Zhou
, K.
, 2019
, “A Model of Mixed Lubrication Based on Non-Normalized Discretization and Its Application for Multilayered Materials
,” ASME J. Tribol.
, 141
(4
), p. 042101
. 25.
He
, D.
, Dong
, Q.
, and Zhao
, G.
, 2021
, “Modeling Mixed Lubrication in Point and Line Contact by Non-Normalized Discretization
,” Int. J. Appl. Mech.
, 13
(7
), pp. 1
–23
.26.
Meng
, F.
, Zheng
, Y.
, Liu
, Y.
, Gong
, J.
, and Wang
, B.
, 2020
, “Multi-Ellipsoid Contact Elastohydrodynamic Lubrication Performance for Deep Groove Ball Bearing
,” Tribol. Int.
, 150
, p. 106367
. 27.
Yunlong
, W.
, Yulong
, L.
, Ziqiang
, Z.
, and Wenzhong
, W.
, 2018
, “Lubrication and Thermal Failure Mechanism Analysis in High-Speed Angular Contact Ball Bearing
,” ASME J. Tribol.
, 140
(3
), p. 031503
. 28.
Tian
, J.
, Zhang
, C.
, Liang
, H.
, and Guo
, D.
, 2022
, “Simulation of the Load Reduction Process of High-Speed Angular Contact Ball Bearing With Coupling Model of Dynamics and Thermo-Elastohydrodynamic Lubrication
,” Tribol. Int.
, 165
, p. 107292
. 29.
Khonsari
, M. M.
, and Hua
, D. Y.
, 1994
, “Thermal Elastohydrodynamic Analysis Using a Generalized Non-Newtonian Formulation With Application to Bair-Winer Constitutive Equation
,” ASME J. Tribol.
, 116
(1
), pp. 37
–46
. 30.
Bair
, S.
, and Winer
, W. O.
, 1979
, “Shear Strength Measurements of Lubricants at High Pressure
,” ASME J. Tribol.
, 101
(3
), pp. 251
–257
.31.
Cao
, W.
, Pu
, W.
, and Wang
, J.
, 2019
, “Tribo-Dynamic Model and Fatigue Life Analysis of Spiral Bevel Gears
,” Eur. J. Mech. A/Solids
, 74
, pp. 124
–138
. 32.
Zhou
, C.
, Pan
, L.
, Xu
, J.
, and Han
, X.
, 2017
, “Non-Newtonian Thermal Elastohydrodynamic Lubrication in Point Contact for a Crowned Herringbone Gear Drive
,” Tribol. Int.
, 116
, pp. 470
–481
. 33.
Wang
, Z.
, Pu
, W.
, Zhang
, Y.
, and Cao
, W.
, 2020
, “Transient Behaviors of Friction, Temperature and Fatigue in Different Contact Trajectories for Spiral Bevel Gears
,” Tribol. Int.
, 141
, p. 105965
. 34.
Zhu
, D.
, and Cheng
, H. S.
, 1989
, “An Analysis and Computational Procedure for Ehl Film Thickness, Friction and Flash Temperature in Line and Point Contacts
,” Tribol. Trans.
, 32
(3
), pp. 364
–370
. 35.
Martini
, A.
, Zhu
, D.
, and Wang
, Q.
, 2007
, “Friction Reduction in Mixed Lubrication
,” Tribol. Lett.
, 28
(2
), pp. 139
–147
. 36.
Pu
, W.
, Wang
, J.
, and Zhu
, D.
, 2016
, “Friction and Flash Temperature Prediction of Mixed Lubrication in Elliptical Contacts With Arbitrary Velocity Vector
,” Tribol. Int.
, 99
, pp. 38
–46
. 37.
Zaretsky
, E. V.
, 1987
, “Fatigue Criterion to System Design, Life, and Reliability
,” J. Propuls. Power
, 3
(1
), pp. 76
–83
. 38.
Zhu
, D.
, Ren
, N.
, and Wang
, Q. J.
, 2009
, “Pitting Life Prediction Based on a 3D Line Contact Mixed EHL Analysis and Subsurface von Mises Stress Calculation
,” ASME J. Tribol.
, 131
(4
), p. 014501
. 39.
Pu
, W.
, Zhu
, D.
, Wang
, J.
, and Jane Wang
, Q. J.
, 2016
, “Rolling-Sliding Contact Fatigue of Surfaces With Sinusoidal Roughness
,” Int. J. Fatigue
, 90
, pp. 57
–68
. Copyright © 2023 by ASME
You do not currently have access to this content.