Abstract

In past years, machining processes have been required when fabricating the complex Inconel 718 parts, and these processes cause undesired tensile residual stresses. Inconel 718 also exhibits extreme work hardening throughout the machining process. To avoid these issues, recently, Inconel 718 parts with high geometric complexity and dimensional accuracy, the laser powder bed fusion (LPBF) process, which belongs to additive manufacturing, has been extensively used. These Inconel 718 parts with LPBF processing are frequently utilized in various industries, including aerospace, automotive, pharmaceutical, and food processing, because of their high strength, biocompatibility, and corrosion resistance. Wear resistance is essential in addition to these properties for designing and crushing applications. In this paper, tribological tests were conducted on the LPBF-processed Inconel 718 parts and compared to casted Inconel 718 parts against the four types of counter bodies, namely boron carbide, silicon carbide, tungsten carbide, and titanium carbide. The studies were carried out for 30 min with a constant load of 5 N, frequency of 10 Hz, and stroke length of 1 mm. In comparison to casted samples, LPBF-processed samples showed low coefficient of friction (COF) values. The highest COF was observed on the cast Inconel 718 against the tungsten carbide counter body. The wear mechanisms were studied using scanning electron microscopy.

References

1.
Darshan
,
C.
,
Jain
,
S.
,
Dogra
,
M.
,
Gupta
,
M. K.
,
Mia
,
M.
, and
Haque
,
R.
,
2019
, “
Correction to: Influence of Dry and Solid Lubricant-Assisted MQL Cooling Conditions on the Machinability of Inconel 718 Alloy With Textured Tool
,”
Int. J. Adv. Manuf. Technol.
,
105
(
5–6
), pp.
1851
1851
.
2.
Agrawal
,
V.
,
Gajrani
,
K. K.
,
Mote
,
R. G.
,
Barshilia
,
H. C.
, and
Joshi
,
S. S.
,
2022
, “
Wear Analysis and Tool Life Modeling in Micro Drilling of Inconel 718 Superalloy
,”
ASME J. Tribol.
,
144
(
10
), p.
101706
.
3.
Zafar
,
S.
,
Bansal
,
A.
,
Sharma
,
A. K.
,
Arora
,
N.
, and
Ramesh
,
C. S.
,
2014
, “
Dry Erosion Wear Performance of Inconel 718 Microwave Clad
,”
Surf. Eng.
,
30
(
11
), pp.
852
859
.
4.
Simsek
,
D.
,
2022
, “
Effect on Wear Performance of ZrO2 Amount of 316L Stainless Steel Matrix Composites Produced by a Mechanical Alloying Method
,”
ASME J. Tribol.
,
144
(
10
), p.
101708
.
5.
Kuo
,
C.-M.
,
Yang
,
Y.-T.
,
Bor
,
H.-Y.
,
Wei
,
C.-N.
, and
Tai
,
C.-C.
,
2009
, “
Aging Effects on the Microstructure and Creep Behavior of Inconel 718 Superalloy
,”
Mater. Sci. Eng. A
,
510–511
(
C
), pp.
289
294
.
6.
Wang
,
Q.-Y.
,
Zhang
,
X.-S.
,
Dong
,
L.-J.
,
Zheng
,
H.-B.
,
Liu
,
T.-Y.
,
Xi
,
Y.-C.
,
Zhang
,
J.
,
Zeng
,
D.-Z.
, and
Lin
,
Y.-H.
,
2023
, “
Effect of Heat Temperature on Microstructure and Wear Mechanism of Laser Additive Manufactured Hastelloy C22
,”
ASME J. Tribol.
,
145
(
3
), p.
031703
.
7.
Zhang
,
S.
,
Tian
,
C.
,
Liu
,
L.
, and
Tan
,
W.
,
2023
, “
Effect of Temperature on Simulated Flow-Induced Vibration Wear Behavior of Inconel 690 Alloy Mated With 304 SS in Pressurized Steam/Water Environment
,”
ASME J. Tribol.
,
145
(
3
), p.
031707
.
8.
Tian
,
Y.
,
McAllister
,
D.
,
Colijn
,
H.
,
Mills
,
M.
,
Farson
,
D.
,
Nordin
,
M.
, and
Babu
,
S.
,
2014
, “
Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process
,”
Metall. Mater. Trans. A
,
45
(
10
), pp.
4470
4483
.
9.
Abioye
,
T. E.
,
Farayibi
,
P. K.
, and
Clare
,
A. T.
,
2017
, “
A Comparative Study of Inconel 625 Laser Cladding by Wire and Powder Feedstock
,”
Mater. Manuf. Process.
,
32
(
14
), pp.
1653
1659
.
10.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,”
J. Alloys Compd.
,
585
, pp.
713
721
.
11.
Koli
,
Y.
,
Aravindan
,
S.
, and
Rao
,
P. V.
,
2023
, “
Wear Characteristics of Wire-Arc Additive Manufactured SS308L
,”
ASME J. Tribol.
,
145
(
3
), p.
031706
.
12.
Fellah
,
M.
, and
Aissani
,
L.
,
2017
, “
Effect of Milling Time on Sliding Friction and Wear Behavior of Hot Isostatically Pressed Titanium Alloys Ti-6Al-4X(X = V, Nb Fe) for Biomedical Applications
,”
ASME J. Tribol
.
13.
Nath
,
S. D.
,
Okello
,
A.
,
Kelkar
,
R.
,
Gupta
,
G.
,
Kearns
,
M.
, and
Atre
,
S. V.
,
2022
, “
Adapting L-PBF Process for Fine Powders: A Case Study in 420 Stainless Steel
,”
Mater. Manuf. Process.
,
37
(
11
), pp.
1320
1331
.
14.
Zhang
,
B.
, and
Wang
,
Z.-H.
,
2023
, “
Effects of Heat Treatment on Sliding Wear and Milling Properties of Ti-6Al-4 V Prepared by Selective Laser Melting
,”
ASME J. Tribol.
,
145
(
6
), p.
061701
.
15.
Ralls
,
A.
,
Mao
,
B.
, and
Menezes
,
P.
,
2023
, “
Tribological Performance of Laser Shock Peened Cold Spray Additive Manufactured 316L Stainless Steel
,”
ASME J. Tribol.
,
145
(
7
), p.
071702
.
16.
Witkin
,
D.
,
Helvajian
,
H.
,
Steffeney
,
L.
, and
Hansen
,
W.
,
2016
, “
Laser Post-Processing of Inconel 625 Made by Selective Laser Melting
,”
Laser 3D Manuf. III
,
9738
, p.
97380W
.
17.
Zhao
,
X.
,
Wei
,
Q.
,
Song
,
B.
,
Liu
,
Y.
,
Luo
,
X.
,
Wen
,
S.
, and
Shi
,
Y.
,
2015
, “
Fabrication and Characterization of AISI 420 Stainless Steel Using Selective Laser Melting
,”
Mater. Manuf. Process.
,
30
(
11
), pp.
1283
1289
.
18.
Basha
,
M. M.
,
Basha
,
S. M.
,
Jain
,
V. K.
, and
Sankar
,
M. R.
,
2022
, “
State of the Art on Chemical and Electrochemical Based Finishing Processes for Additive Manufactured Features
,”
Addit. Manuf.
,
58
, p.
103028
.
19.
Manoj
,
A.
,
Rao
,
M. A.
,
Basha
,
M. M.
,
Basha
,
S. M.
, and
Sankar
,
M. R.
,
2020
, “
State of Art on Wire Feed Additive Manufacturing of Ti-6Al-4 V Alloy
,”
Mater. Today Proc.
,
26
, pp.
2608
2615
.
20.
Scherillo
,
F.
,
Astarita
,
A.
,
Carrino
,
L.
,
Pirozzi
,
C.
,
Prisco
,
U.
, and
Squillace
,
A.
,
2019
, “
Linear Friction Welding of Ti-6Al-4 V Parts Produced by Electron Beam Melting
,”
Mater. Manuf. Process.
,
34
(
2
), pp.
201
207
.
21.
Haribaskar
,
R.
,
Kumar
,
T. S.
, and
Tamiloli
,
N.
,
2022
, “
Surface Integrity of Additively Manufactured Inconel-718 by Peening Approaches
,”
Mater. Manuf. Process.
,
38
(
8
), pp.
1009
1019
.
22.
Nikouei
,
S. M.
,
Razfar
,
M. R.
, and
Khajehzadeh
,
M.
,
2022
, “
Influence of Nanoparticles’ Size on Inconel 718 Machining Induced Residual Stresses
,”
Mater. Manuf. Process.
,
37
(
9
), pp.
1003
1012
.
23.
Kumar
,
A.
,
Alam
,
Z.
,
Khan
,
D. A.
, and
Jha
,
S.
,
2019
, “
Nanofinishing of FDM-Fabricated Components Using Ball End Magnetorheological Finishing Process
,”
Mater. Manuf. Process.
,
34
(
2
), pp.
232
242
.
24.
Basha
,
S. M.
,
Bhuyan
,
M.
,
Basha
,
M. M.
,
Venkaiah
,
N.
, and
Sankar
,
M. R.
,
2020
, “
Laser Polishing of 3D Printed Metallic Components: A Review on Surface Integrity
,”
Mater. Today Proc.
,
26
, pp.
2047
2054
.
25.
Deepak
,
J.
, and
Hariharan
,
P
,
2022
, “
Investigation of Electrochemical Machining on SS304 Using NaCl and NaNo3 as Electrolyte
,”
Mater. Manuf. Process.
,
37
(
15
), pp.
1790
1803
.
26.
Basha
,
M. M.
, and
Sankar
,
M. R.
,
2023
, “
Experimental Investigations on Surface Morphology and Metallurgical Studies of Additive Manufactured Stainless Steel Features Finished by Electrolytic Ionic Interactions
,”
Tribol. Int.
,
188
, p.
108776
.
27.
Murthy
,
T. S. R. C.
,
Basha
,
M. M.
,
Sonber
,
J. K.
,
Singh
,
K.
,
Raju
,
K.
,
Sairam
,
K.
,
Nagaraj
,
A.
,
Majumdar
,
S.
,
Rao
,
G. V. S. N.
, and
Kain
,
V.
,
2018
, “
Tribology Study on TiB2 + WSi2 Composite Against WC
,”
J. Phys. Conf. Ser.
,
1942
(
1
), p.
140016
.
28.
Basha
,
S. M.
,
Basha
,
M. M.
,
Venkaiah
,
N.
, and
Sankar
,
M. R.
,
2021
, “
A Review on Abrasive Flow Finishing of Metal Matrix Composites
,”
Mater. Today Proc.
,
44
, pp.
579
586
.
29.
Pariyar
,
A.
,
Edachery
,
V.
,
John
,
A.
, and
Kailas
,
S. V.
,
2021
, “
A Comparative Tribological Study of Inconel X750 Under Surface Hardened and Non-Hardened Conditions
,”
Surf. Topogr. Metrol. Prop.
,
9
(
3
), p.
035020
.
30.
Yang
,
Y.
,
Luan
,
H.
,
Guo
,
S.
,
Liu
,
F.
,
Dai
,
Y.
,
Zhang
,
C.
,
Zhang
,
D.
, and
Zhou
,
G.
,
2022
, “
Tribological Behaviors of Inconel 718–Tungsten Carbide Friction Pair With Sulfur Additive Lubrication
,”
Metals (Basel)
,
12
(
11
), p.
1841
.
31.
Gao
,
Y.
, and
Zhou
,
M.
,
2018
, “
Superior Mechanical Behavior and Fretting Wear Resistance of 3D-Printed Inconel 625 Superalloy
,”
Appl. Sci.
,
8
(
12
), p.
2439
.
32.
Samal
,
P.
, and
Vundavilli
,
P. R.
,
2023
, “
Dry Sliding Wear Performances of AA5052 Hybrid Composite Brake Disc Materials Reinforced With In-Situ Synthesized TiC and Multi-Walled CNT
,”
ASME J. Tribol.
,
145
(
10
), p.
101705
.
33.
Liu
,
X.
,
Wang
,
K.
,
Hu
,
P.
,
He
,
X.
,
Yan
,
B.
, and
Zhao
,
X.
,
2021
, “
Formability, Microstructure and Properties of Inconel 718 Superalloy Fabricated by Selective Laser Melting Additive Manufacture Technology
,”
Materials (Basel)
,
14
(
4
), p.
991
.
34.
Arias
,
S.
,
Castaño
,
J. G.
,
Correa
,
E.
,
Echeverría
,
F.
, and
Gómez
,
M.
,
2019
, “
Effect of Heat Treatment on Tribological Properties of Ni-B Coatings on Low Carbon Steel: Wear Maps and Wear Mechanisms
,”
ASME J. Tribol.
,
141
(
9
), p.
091601
.
35.
Trosch
,
T.
,
Strößner
,
J.
,
Völkl
,
R.
, and
Glatzel
,
U.
,
2016
, “
Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting
,”
Mater. Lett.
,
164
, pp.
428
431
.
36.
Sivaiah
,
P.
,
Ajay Kumar
,
G. V
,
Singh
,
M. M.
, and
Kumar
,
H.
,
2020
, “
Effect of Novel Hybrid Texture Tool on Turning Process Performance in MQL Machining of Inconel 718 Superalloy
,”
Mater. Manuf. Process.
,
35
(
1
), pp.
61
71
.
37.
Ezugwu
,
E.
,
Bonney
,
J.
, and
Yamane
,
Y.
,
2003
, “
An Overview of the Machinability of Aeroengine Alloys
,”
J. Mater. Process. Technol.
,
134
(
2
), pp.
233
253
.
38.
Strößner
,
J.
,
Terock
,
M.
, and
Glatzel
,
U.
,
2015
, “
Mechanical and Microstructural Investigation of Nickel-Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM)
,”
Adv. Eng. Mater.
,
17
(
8
), pp.
1099
1105
.
39.
Vincent
,
R.
,
1985
, “
Precipitation Around Welds in the Nickel-Base Superalloy, Inconel 718
,”
Acta Metall.
,
33
(
7
), pp.
1205
1216
.
40.
Wu
,
K.
,
Sun
,
W.
,
Tan
,
A. W.-Y.
,
Marinescu
,
I.
,
Liu
,
E.
, and
Zhou
,
W.
,
2021
, “
An Investigation Into Microstructure, Tribological and Mechanical Properties of Cold Sprayed Inconel 625 Coatings
,”
Surf. Coatings Technol.
,
424
, p.
127660
.
41.
Çelik
,
Y. H.
, and
Kilickap
,
E.
,
2019
, “
Hardness and Wear Behaviours of Al Matrix Composites and Hybrid Composites Reinforced With B4C and SiC
,”
Powder Metall. Met. Ceram.
,
57
(
9–10
), pp.
613
622
.
42.
Michael
,
K.
,
AghajanianAllyn
,
L.
,
MccormickBradley
,
N.
,
MorganAnthony
,
F.
, and
Liszkiewicz
,
J.
, “Reaction-Bonded Silicon Carbide Composite Bodies and Methods for Making Same,” P. Patent, p. WO2002068373A2.
43.
Moema
,
J. S.
,
Papo
,
M. J.
,
Stumpf
,
W. E.
, and
Slabbert
,
D.
,
2010
, “
The Role of Retained Austenite on Performance of Grinding Media
,”
Proceedings—International Brazilian Conference on Tribology
,
Copacabana, Brazil
,
January
, pp.
319
335
.
44.
Correa
,
E. O.
,
Santos
,
J. N.
, and
Klein
,
A. N.
,
2010
, “
Microstructure and Mechanical Properties of WC Ni–Si Based Cemented Carbides Developed by Powder Metallurgy
,”
Int. J. Refract. Met. Hard Mater.
,
28
(
5
), pp.
572
575
.
45.
Pereira
,
J. C.
,
Aranzabe
,
J.
,
Taboada
,
M. C.
,
Ruiz
,
N.
, and
Rodriguez
,
P. P.
,
2021
, “
Analysis of Microstructure and Mechanical Properties in As-Built/As-Cast and Heat-Treated Conditions for IN718 Alloy Obtained by Selective Laser Melting and Investment Casting Processes
,”
Crystals
,
11
(
10
), p.
1196
.
You do not currently have access to this content.