Abstract

The influence of laser modes and power on the tribological behavior of additively manufactured Inconel 718 alloy using the directed energy deposition (DED) process was investigated. The samples were fabricated with continuous wave (CW) and pulse wave (PW) laser modes using 700, 900, and 1100 W laser power. The samples exhibited high hardness (3–5 GPa) and modulus (150–200 GPa) which increases with the laser power for CW- and PW-fabricated samples, and this was associated with the increasing densification and hardening secondary phase. The coefficient of friction increases with laser power for the CW samples but decreases for the PW samples. The samples exhibited low wear rates ranging between 25 and 70 × 10−5 mm3/Nm. Pulse wave samples demonstrated better tribological performance compared to continuous wave at any laser power. The dominant wear mechanism is the three-body abrasive wear followed by localized and discrete adhesion wear mechanism.

References

1.
Friel
,
R. J.
,
2015
, “
Power Ultrasonics for Additive Manufacturing and Consolidating of Materials
,”
Power Ultrasonics
, pp.
313
335
.
2.
Gibson
,
I.
,
Rosen
,
D.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
,
Additive Manufacturing Technologies
,
Springer Nature
,
Switzerland
.
3.
Bambach
,
M.
,
Sizova
,
I.
,
Kies
,
F.
, and
Haase
,
C.
,
2021
, “
Directed Energy Deposition of Inconel 718 Powder, Cold and Hot Wire Using a Six-Beam Direct Diode Laser Set-Up
,”
Addit. Manuf.
,
47
, p. 102269.
4.
Zhang
,
R.
,
Bian
,
N.
,
Lu
,
H.
,
Li
,
Y.
,
Tian
,
Y.
, and
Li
,
W.
,
2022
, “
Molten Pool Swing in Printing the Steel/Inconel Functionally Gradient Material With Laser-Based Directed Energy Deposition
,”
Manuf. Lett.
,
32
, pp.
44
48
.
5.
Yang
,
Y.
,
Zhu
,
Y.
, and
Yang
,
H.
,
2020
, “
Enhancing Wear Resistance of Selective Laser Melted Parts: Influence of Energy Density
,”
ASME J. Tribol.
,
142
(
11
), p.
111701
.
6.
Renner
,
P.
,
Jha
,
S.
,
Chen
,
Y.
,
Raut
,
A.
,
Mehta
,
S. G.
, and
Liang
,
H.
,
2021
, “
A Review on Corrosion and Wear of Additively Manufactured Alloys
,”
ASME J. Tribol.
,
143
(
5
), p.
050802
.
7.
Sreekanth
,
S.
,
2020
,
Laser-Directed Energy Desposition: Influence of Process Parameters and Heat Treatments
,
University West
,
Trollhättan, Sweden
.
8.
You
,
X.
,
Shi
,
S.
,
Tan
,
Y.
,
Zhao
,
L.
,
Zheng
,
J.
,
Zhuang
,
X.
,
Li
,
Y.
,
You
,
Q.
,
Li
,
P.
, and
Long
,
W.
,
2019
, “
The Evaporation Behavior of Alloy Elements During Electron Beam Smelting of Inconel 718 Alloy
,”
Vacuum
,
169
, p. 108920.
9.
Sharma
,
S. K.
,
Biswas
,
K.
, and
Dutta Majumdar
,
J.
,
2019
, “Wear Behaviour of Electron Beam Surface Melted Inconel 718,”
Procedia Manufacturing
,
T.
Jen
,
E.
Akinlabi
,
P.
Olubambi
, and
C.
Augbavboa
, eds.,
Elsevier B.V.
,
Netherlands
, pp.
866
873
.
10.
Wang
,
Y. C.
,
Lei
,
L. M.
,
Shi
,
L.
,
Wan
,
H. Y.
,
Liang
,
F.
, and
Zhang
,
G. P.
,
2020
, “
Scanning Strategy Dependent Tensile Properties of Selective Laser Melted GH4169
,”
Mater. Sci. Eng. A
,
788
, p. 139616.
11.
Wang
,
Z.
,
Wang
,
J.
,
Xu
,
S.
,
Liu
,
B.
,
Sui
,
Q.
,
Zhao
,
F.
,
Gong
,
L.
, and
Liu
,
J.
,
2022
, “
Influence of Powder Characteristics on Microstructure and Mechanical Properties of Inconel 718 Superalloy Manufactured by Direct Energy Deposition
,”
Appl. Surf. Sci.
,
583
.
12.
Wang
,
J.
,
Zhou
,
X.
,
Li
,
J.
,
Zhu
,
J.
, and
Zhang
,
M.
,
2022
, “
A Comparative Study of Cu–15Ni–8Sn Alloy Prepared by L-DED and L-PBF: Microstructure and Properties
,”
Mater. Sci. Eng. A
,
840
.
13.
Liu
,
X.
,
Wang
,
K.
,
Hu
,
P.
,
He
,
X.
,
Yan
,
B.
, and
Zhao
,
X.
,
2021
, “
Formability, Microstructure and Properties of Inconel 718 Superalloy Fabricated by Selective Laser Melting Additive Manufacture Technology
,”
Materials
,
14
(
4
), pp.
1
18
.
14.
Wang
,
Q.
,
Zhang
,
X.
,
Dong
,
L.
,
Zheng
,
H.
,
Liu
,
T.
,
Xi
,
Y.
,
Zhang
,
J.
,
Zeng
,
D.
, and
Lin
,
Y.
,
2023
, “
Effect of Heat Temperature on Microstructure and Wear Mechanism of Laser Additive Manufactured Hastelloy C22
,”
ASME J. Tribol.
,
145
(
1
), p.
011702
.
15.
Brabazon
,
D.
,
Naher
,
S.
, and
Biggs
,
P.
,
2008
, “
Laser Surface Modification of Tool Steel for Semi-Solid Steel Forming
,”,
Solid State Phenomena
,
141
, pp.
255
260
.
16.
Lu
,
J. Z.
,
Cao
,
J.
,
Lu
,
H. F.
,
Zhang
,
L. Y.
, and
Luo
,
K. Y.
,
2019
, “
Wear Properties and Microstructural Analyses of Fe-Based Coatings With Various WC Contents on H13 Die Steel by Laser Cladding
,”
Surf. Coat. Technol.
,
369
, pp.
228
237
.
17.
Xue
,
L.
,
Wang
,
J.
,
Li
,
L.
,
Chen
,
G.
,
Sun
,
L.
, and
Yu
,
S.
,
2020
, “
Enhancement of Wear and Erosion-Corrosion Resistance of Inconel 718 Alloy by Liquid Nitriding
,”
Mater. Res. Exp.
,
7
(
9
).
18.
Agrawal
,
V.
,
Gajrani
,
K. K.
,
Mote
,
R. G.
,
Barshilia
,
H. C.
, and
Joshi
,
S. S.
,
2022
, “
Wear Analysis and Tool Life Modeling in Micro Drilling of Inconel 718 Superalloy
,”
ASME J. Tribol.
,
144
(
10
), p.
101706
.
19.
Mahmoodkhani
,
Y.
,
Ali
,
U.
,
Liravi
,
F.
,
Esmaeilizadeh
,
R.
, and
Marzbanrad
,
E.
,
2018
, “
Determination of the Most Contributing Laser Powder Bed Fusion Process Parameters on the Surface Roughness Quality of Hastelloy X Components
,”
Global Power Propulsion Society
, GPPS-NA-2018-0132.
20.
Xu
,
Z.
,
Lu
,
Z.
,
Zhang
,
J.
,
Li
,
D.
,
Liu
,
J.
, and
Lin
,
C.
,
2021
, “
The Friction and Wear Behaviours of Inconel 718 Superalloys at Elevated Temperature
,”
Front. Mater.
,
8
.
21.
Samuel
,
S. C.
,
Arivarasu
,
M.
, and
Prabhu
,
T. R.
,
2020
, “
High Temperature Dry Sliding Wear Behaviour of Laser Powder Bed Fused Inconel 718
,”
Addit. Manuf.
,
34
.
22.
Kaynak
,
Y.
, and
Tascioglu
,
E.
,
2020
, “
Post-Processing Effects on the Surface Characteristics of Inconel 718 Alloy Fabricated by Selective Laser Melting Additive Manufacturing
,”
Prog. Addit. Manuf.
,
5
(
2
), pp.
221
234
.
23.
Shang
,
F.
,
Chen
,
S.
,
Zhou
,
L.
,
Jia
,
W.
,
Cui
,
T.
,
Liang
,
J.
,
Liu
,
C.
, and
Wang
,
M.
,
2021
, “
Effect of Laser Energy Volume Density on Wear Resistance and Corrosion Resistance of 30Cr15MoY Alloy Steel Coating Prepared by Laser Direct Metal Deposition
,”
Surf. Coat. Technol.
,
421
, p.
127382
.
24.
Zou
,
X.
,
Yan
,
Z.
,
Zou
,
K.
,
Gang Zhang
,
S.
,
Liu
,
W.
, and
Song
,
L.
,
2022
, “
Residual Stress Control of 316 L Stainless Steel Using Pulsed-Wave Laser Additive Manufacturing
,”
Opt. Laser. Technol.
,
150
.
25.
Karami
,
K.
,
Blok
,
A.
,
Weber
,
L.
,
Ahmadi
,
S. M.
,
Petrov
,
R.
,
Nikolic
,
K.
,
Borisov
,
E. v.
, et al
,
2020
, “
Continuous and Pulsed Selective Laser Melting of Ti6Al4V Lattice Structures: Effect of Post-Processing on Microstructural Anisotropy and Fatigue Behaviour
,”
Addit. Manuf.
,
36
.
26.
Adesina
,
A. Y.
,
2022
, “
Tribological Behavior of TiN/TiAlN, CrN/TiAlN, and CrAlN/TiAlN Coatings at Elevated Temperature
,”
J. Mater. Eng. Perform.
,
31
(
8
), pp.
6404
6419
.
27.
Adesina
,
A. Y.
,
Iqbal
,
Z.
,
Al-Badour
,
F. A.
, and
Gasem
,
Z. M.
,
2019
, “
Mechanical and Tribological Characterization of AlCrN Coated Spark Plasma Sintered W–25%Re–Hfc Composite Material for FSW Tool Application
,”
J. Mater. Res. Technology
,
8
(
1
), pp.
436
446
.
28.
Johannes
,
S.
,
Ignacio
,
A.-C.
,
Erwin
,
F.
,
Verena
,
K.
,
Mark
,
L.
,
Tobias
,
P.
,
Stephan
,
P.
, et al
,
2012
, “
Fiji: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
676
682
.
29.
Xu
,
L.
,
Chai
,
Z.
,
Chen
,
H.
,
Zhang
,
X.
,
Xie
,
J.
, and
Chen
,
X.
,
2021
, “
Tailoring Laves Phase and Mechanical Properties of Directed Energy Deposited Inconel 718 Thin-Wall via a Gradient Laser Power Method
,”
Mater. Sci. Eng. A
,
824
.
30.
Ding
,
R. G.
,
Huang
,
Z. W.
,
Li
,
H. Y.
,
Mitchell
,
I.
,
Baxter
,
G.
, and
Bowen
,
P.
,
2015
, “
Electron Microscopy Study of Direct Laser Deposited IN718
,”
Mater. Charact.
,
106
, pp.
324
337
.
31.
Zhang
,
S.
,
Wang
,
L.
,
Lin
,
X.
,
Yang
,
H.
, and
Huang
,
W.
,
2022
, “
The Formation and Dissolution Mechanisms of Laves Phase in Inconel 718 Fabricated by Selective Laser Melting Compared to Directed Energy Deposition and Cast
,”
Compos. B. Eng.
,
239
, p.
109994
.
32.
Klinkenberg
,
C.
,
Hulka
,
K.
, and
Bleck
,
W.
,
2004
,
Niobium Carbide Precipitation in Microalloyed Steel
,
Steel Research International, Verlag Stahleisen GmbH
, pp.
744
752
.
33.
Gopi
,
V.
,
Sellamuthu
,
R.
, and
Arul
,
S.
,
2014
, “Measurement of Hardness, Wear Rate and Coefficient of Friction of Surface Refined Al-Cu Alloy,”
Procedia Engineering
,
M.
Anthony Xavior
, and
P. K. D. V.
Yarlagadda
, eds.,
Elsevier Ltd
,
Netherlands
, pp.
1355
1360
.
34.
Ding
,
C.
,
Xing
,
Z.
,
Wang
,
Z.
,
Qin
,
Z.
,
Wang
,
J.
,
Zhao
,
X.
, and
Yang
,
X.
,
2022
, “
The Comprehensive Effect of Tensile Strength and Modulus on Abrasive Wear Performance for Polyurethanes
,”
Tribol. Int.
,
169
, p.
107459
.
35.
Ferreri
,
N. C.
,
Vogel
,
S. C.
, and
Knezevic
,
M.
,
2020
, “
Determining Volume Fractions of γ, Γ′, Γ″, δ, and MC-Carbide Phases in Inconel 718 as a Function of Its Processing History Using an Advanced Neutron Diffraction Procedure
,”
Mater. Sci. Eng. A
,
781
, p.
139228
.
36.
Sui
,
S.
,
Li
,
Z.
,
Zhong
,
C.
,
Zhang
,
Q.
,
Gasser
,
A.
,
Chen
,
J.
,
Chew
,
Y.
, and
Bi
,
G.
,
2021
, “
Laves Phase Tuning for Enhancing High Temperature Mechanical Property Improvement in Laser Directed Energy Deposited Inconel 718
,”
Compos. B. Eng.
,
215
.
37.
Liu
,
F.
,
Lyu
,
F.
,
Liu
,
F.
,
Lin
,
X.
, and
Huang
,
C.
,
2020
, “
Laves Phase Control of Inconel 718 Superalloy Fabricated by Laser Direct Energy Deposition via δ Aging and Solution Treatment
,”
J. Mater. Res. Technol.
,
9
(
5
), pp.
9753
9765
.
38.
Sames
,
W. J.
,
List
,
F. A.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
39.
Amato
,
K.
,
Hernandez
,
J.
,
Murr
,
L. E.
,
Martinez
,
E.
,
Gaytan
,
S. M.
,
Shindo
,
P. W.
, and
Collins
,
S.
,
2012
, “
Comparison of Microstructures and Properties for a Ni-Base Superalloy (Alloy 625) Fabricated by Electron Beam Melting
,”
J. Mater. Sci. Res.
,
1
(
2
), pp.
1
39
.
40.
Nguejio
,
J.
,
Szmytka
,
F.
,
Hallais
,
S.
,
Tanguy
,
A.
,
Nardone
,
S.
, and
Godino Martinez
,
M.
,
2019
, “
Comparison of Microstructure Features and Mechanical Properties for Additive Manufactured and Wrought Nickel Alloys 625
,”
Mater. Sci. Eng. A
,
764
, p.
138214
.
41.
Gamon
,
A.
,
Arrieta
,
E.
,
Gradl
,
P. R.
,
Katsarelis
,
C.
,
Murr
,
L. E.
,
Wicker
,
R. B.
, and
Medina
,
F.
,
2021
, “
Microstructure and Hardness Comparison of As-Built Inconel 625 Alloy Following Various Additive Manufacturing Processes
,”
Results Mater.
,
12
.
42.
Alhuzaim
,
A.
,
Imbrogno
,
S.
, and
Attallah
,
M. M.
,
2021
, “
Controlling Microstructural and Mechanical Properties of Direct Laser Deposited Inconel 718 via Laser Power
,”
J. Alloys Compd.
,
872
, p.
159588
.
43.
Adesina
,
A. Y.
,
Zainelabdeen
,
I. H.
,
Dalhat
,
M. A.
,
Mohammed
,
A. S.
,
Sorour
,
A. A.
, and
Al-Badou
,
F. A.
,
2020
, “
Influence of Micronized Waste Tire Rubber on the Mechanical and Tribological Properties of Epoxy Composite Coatings
,”
Tribol. Int.
,
146
, p.
106244
.
44.
Malyshev
,
N. V.
,
2014
, “Tribological Aspects in Friction Stir Welding and Processing,”
Advances in Friction-Stir Welding and Processing
,
K. B. G.
Mohammad
, and
A.
Parviz
,
Woodhead Publishing Series in Welding and Other Joining Technologies, Woodhead Publishing
,
Sawston, UK
, pp.
329
386
.
45.
Zhang
,
H.
,
Gu
,
D.
,
Ma
,
C.
,
Guo
,
M.
,
Wang
,
R.
,
Yang
,
J.
, and
Ge
,
Q.
,
2020
, “
Microstructure and Tribological Property of Selective Laser Melted Ni-Based Composites Using Different Scanning Strategies
,”
Vacuum
,
177
, p.
109439
.
46.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,”
J. Alloys. Compd.
,
585
, pp.
713
721
.
47.
Karabulut
,
Y.
,
Tascioglu
,
E.
, and
Kaynak
,
Y.
,
2021
, “
Heat Treatment Temperature-Induced Microstructure, Microhardness and Wear Resistance of Inconel 718 Produced by Selective Laser Melting Additive Manufacturing
,”
Optik
,
227
, p.
163907
.
48.
Zong
,
Y.
,
Hashimoto
,
N.
, and
Oka
,
H.
,
2022
, “
Study on Irradiation Effects of Refractory Bcc High-Entropy Alloy
,”
Nucl. Mater. Energy
,
31
, p.
101158
.
49.
Du
,
L. M.
,
Lan
,
L. W.
,
Zhu
,
S.
,
Yang
,
H. J.
,
Shi
,
X. H.
,
Liaw
,
P. K.
, and
Qiao
,
J. W.
,
2019
, “
Effects of Temperature on the Tribological Behavior of Al 0.25 CoCrFeNi High-Entropy Alloy
,”
J. Mater. Sci. Technol
,
35
(
5
), pp.
917
925
.
50.
Adesina
,
A. Y.
,
Al-Badour
,
F. A.
, and
Gasem
,
Z. M.
,
2018
, “
Wear Resistance Performance of AlCrN and TiAlN Coated H13 Tools During Friction Stir Welding of A2124/SiC Composite
,”
J. Manuf. Process.
,
33
, pp.
11
125
.
51.
Fillot
,
N.
,
Iordanoff
,
I.
, and
Berthier
,
Y.
,
2007
, “
Wear Modeling and the Third Body Concept
,”
Wear
,
262
(
7–8
), pp.
949
957
.
52.
Liang
,
J.
,
Gao
,
H.
,
Xiang
,
S.
,
Chen
,
L.
,
You
,
Z.
, and
Lei
,
Y.
,
2022
, “
Research on Tool Wear Morphology and Mechanism During Turning Nickel-Based Alloy GH4169 With PVD-TiAlN Coated Carbide Tool
,”
Wear
,
508–509
, p.
204468
.
You do not currently have access to this content.