Abstract

In order to further expand the application field of medium manganese steel, its wear property and strengthening mechanism under the slurry erosion wear were studied in this paper. At different erosion angles and velocities, the erosion-wear resistance of medium manganese steel was superior to the martensitic wear-resistant steel. The formation of wear-hardened layer caused by the work-hardening effect was the fundamental reason for wear strengthening. The depth of the wear-hardening layer was nearly 400 µm and surface hardness was above 495 HV. The wear strengthening mechanism was attributed to the combined strengthening, including the martensitic transformation, twin, and dislocation strengthening. The maximum value of erosion wear-rate appeared at 60 deg erosion angle and the minimum value occurred at 90 deg erosion angle. The erosion-wear damage included three aspects of the micro-cutting, erosion peeling caused by the plastic deformation, and local gouging abrasion. The change of erosion angle led to the change of normal and tangential force components of erosion particles on the wear surface, which changed the main wear mechanism of erosion wear. With the change of erosion angle from low to high, the main wear mechanism gradually changed from the micro-cutting wear to the erosion peeling wear and local gouging abrasion.

References

1.
Bouaziz
,
O.
,
Allain
,
S.
,
Scott
,
C. P.
,
Cugy
,
P.
, and
Barbier
,
D.
,
2011
, “
High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships
,”
Curr. Opin. Solid State Mater. Sci.
,
15
(
4
), pp.
141
168
.
2.
Xiong
,
R. L.
,
Peng
,
H. B.
,
Zhang
,
T. W.
,
Bae
,
J. W.
,
Kim
,
H. S.
, and
Wen
,
Y. H.
,
2021
, “
Superior Strain-Hardening by Deformation-Induced Nano-HCP Martensite in Fe–Mn–Si–C High-Manganese Steel
,”
Mater. Sci. Eng. A
,
824
, p.
141864
.
3.
Srivastava
,
A. K.
, and
Das
,
K.
,
2008
, “
Microstructural Characterization of Hadfield Austenitic Manganese Steel
,”
J. Mater. Sci.
,
43
(
16
), pp.
5654
5658
.
4.
Efstathiou
,
C.
, and
Sehitoglu
,
H.
,
2010
, “
Strain Hardening and Heterogeneous Deformation During Twinning in Hadfield Steel
,”
Acta Mater.
,
58
(
5
), pp.
1479
1488
.
5.
Karaman
,
I.
,
Sehitoglu
,
H.
,
Gall
,
K.
,
Chumlyakov
,
Y. I.
, and
Maier
,
H. J.
,
2000
, “
Deformation of Single Crystal Hadfield Steel by Twinning and Slip
,”
Acta Mater.
,
48
(
6
), pp.
1345
1359
.
6.
Si
,
H. T.
,
Xiong
,
R. L.
,
Song
,
F.
,
Wen
,
Y. H.
, and
Peng
,
H. B.
,
2014
, “
Wear Resistance of Austenitic Steel Fe–17Mn–6Si–0.3C With High Silicon and High Manganese
,”
Acta Metall. Sin. (Engl. Lett.)
,
27
(
2
), pp.
352
358
.
7.
Nakada
,
N.
,
Mizutani
,
K.
,
Tsuchiyama
,
T.
, and
Takaki
,
S.
,
2014
, “
Difference in Transformation Behavior Between Ferrite and Austenite Formations in Medium Manganese Steel
,”
Acta Mater.
,
65
, pp.
251
258
.
8.
Vincze
,
G.
,
Butuc
,
M. C.
, and
Barlat
,
F.
,
2016
, “
Mechanical Behaviour of TWIP Steel Under Shear Loading
,”
J. Phys. Conf. Ser.
,
734
(
3
), p.
032111
.
9.
Eskandari
,
M.
,
Hanzaki
,
A. Z.
, and
Marandi
,
A.
,
2012
, “
An Investigation Into the Mechanical Behavior of a New Transformation-Twinning Induced Plasticity Steel
,”
Mater. Des.
,
39
, pp.
279
284
.
10.
Grässel
,
O.
,
Krüger
,
L.
,
Frommeyer
,
G.
, and
Meyer
,
L. W.
,
2000
, “
High Strength Fe–Mn–(Al, Si) TRIP/TWIP Steels Development-Properties-Application
,”
Int. J. Plast.
,
16
(
10–11
), pp.
1391
1409
.
11.
Elliott
,
R.
,
Coley
,
K.
,
Mostaghel
,
S.
, and
Barati
,
M.
,
2018
, “
Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 1: Current Practice and Processing Fundamentals
,”
JOM
,
70
(
5
), pp.
680
690
.
12.
Mishra
,
G.
,
Chandan
,
A. K.
, and
Kundu
,
S.
,
2017
, “
Hot Rolled and Cold Rolled Medium Manganese Steel: Mechanical Properties and Microstructure
,”
Mater. Sci. Eng. A
,
701
, pp.
319
327
.
13.
Wang
,
C.
,
Shi
,
J.
,
Wang
,
C. Y.
,
Hui
,
W. J.
,
Wang
,
M. Q.
,
Dong
,
H.
, and
Cao
,
W. Q.
,
2011
, “
Development of Ultrafine Lamellar Ferrite and Austenite Duplex Structure in 0.2C5Mn Steel During ART-Annealing
,”
ISIJ Int.
,
51
(
4
), pp.
651
656
.
14.
Hanamura
,
T.
,
Torizuka
,
S.
,
Sunahara
,
A.
,
Imagumbai
,
M.
, and
Takechi
,
H.
,
2011
, “
Excellent Total Mechanical-Properties-Balance of 5% Mn, 30000 MPa% Steel
,”
ISIJ Int.
,
51
(
4
), pp.
685
687
.
15.
Lee
,
Y. K.
, and
Han
,
J.
,
2015
, “
Current Opinion in Medium Manganese Steel
,”
Mater. Sci. Technol.
,
31
(
7
), pp.
843
856
.
16.
Cai
,
Z. H.
,
Ding
,
H.
,
Kamoutsi
,
H.
,
Haidemenopoulos
,
G. N.
, and
Misra
,
R. D. K.
,
2016
, “
Interplay Between Deformation Behavior and Mechanical Properties of Intercritically Annealed and Tempered Medium-Manganese Transformation-Induced Plasticity Steel
,”
Mater. Sci. Eng. A
,
654
, pp.
359
367
.
17.
Li
,
Z. C.
,
Ding
,
H.
, and
Cai
,
Z. H.
,
2015
, “
Mechanical Properties and Austenite Stability in Hot-Rolled 0.2C–1.6/3.2Al–6Mn–Fe TRIP Steel
,”
Mater. Sci. Eng. A
,
639
, pp.
559
566
.
18.
Ge
,
S. R.
,
Wang
,
Q. L.
, and
Wang
,
J. X.
,
2017
, “
The Impact Wear-Resistance Enhancement Mechanism of Medium Manganese Steel and Its Applications in Mining Machines
,”
Wear
,
376–377
(
Part B
), pp.
1097
1104
.
19.
Chen
,
H.
,
Zhao
,
D.
,
Wang
,
Q. L.
,
Qiang
,
Y. H.
, and
Qi
,
J. W.
,
2017
, “
Effects of Impact Energy on the Wear Resistance and Work Hardening Mechanism of Medium Manganese Austenitic Steel
,”
Friction
,
5
(
4
), pp.
447
454
.
20.
Lee
,
S.
,
Estrin
,
Y.
, and
De Cooman
,
B. C.
,
2013
, “
Constitutive Modeling of the Mechanical Properties of V-Added Medium Manganese TRIP Steel
,”
Metall. Mater. Trans. A
,
44
(
7
), pp.
3136
3146
.
21.
Cai
,
M. H.
,
Li
,
Z.
,
Chao
,
Q.
, and
Hodgson
,
P. D.
,
2014
, “
A Novel Mo and Nb Microalloyed Medium Mn TRIP Steel With Maximal Ultimate Strength and Moderate Ductility
,”
Metall. Mater. Trans. A
,
45
(
12
), pp.
5624
5634
.
22.
Chen
,
S. C.
,
Ye
,
H. X.
, and
Lin
,
X. Q.
,
2017
, “
Effect of Rare Earth and Alloying Elements on the Thermal Conductivity of Austenitic Medium Manganese Steel
,”
Int. J. Miner. Metall. Mater.
,
24
(
6
), pp.
670
674
.
23.
Wang
,
J.
,
Wang
,
Q. L.
,
Zhang
,
X.
, and
Zhang
,
D. K.
,
2018
, “
Impact and Rolling Abrasive Wear Behavior and Hardening Mechanism for Hot-Rolled Medium-Manganese Steel
,”
ASME J. Tribol.
,
140
(
3
), p.
031608
.
24.
Ge
,
S. R.
,
Wang
,
J. X.
,
Wang
,
Q. L.
, and
Chen
,
H.
,
2016
, “
Self-Strengthening Wear Resistant Mechanism and Application of Medium Manganese Steel Applied for the Chute of Scraper Conveyor
,”
J. Chin. Coal Soc.
,
41
(
9
), pp.
2373
2379
.
25.
Zhang
,
M. D.
,
Cao
,
W. Q.
,
Dong
,
H.
, and
Zhu
,
J.
,
2016
, “
Element Partitioning Effect on Microstructure and Mechanical Property of the Micro-laminated Fe–Mn–Al–C Dual Phase Steel
,”
Mater. Sci. Eng. A
,
654
, pp.
193
202
.
26.
Sun
,
B.
,
Fazeli
,
F.
,
Scott
,
C.
,
Guo
,
B. Q.
,
Aranas
,
C.
,
Chu
,
X.
,
Jahazi
,
M.
, and
Yue
,
S.
,
2018
, “
Microstructural Characteristics and Tensile Behavior of Medium Manganese Steels With Different Manganese Additions
,”
Mater. Sci. Eng. A
,
729
, pp.
496
507
.
27.
Park
,
T. M.
,
Kim
,
H. J.
,
Um
,
H. Y.
,
Goo
,
N. H.
, and
Han
,
J.
,
2020
, “
The Possibility of Enhanced Hydrogen Embrittlement Resistance of Medium-Mn Steels by Addition of Micro-alloying Elements
,”
Mater. Charact.
,
165
, pp.
110386
110396
.
28.
Xu
,
L. J.
,
Wang
,
F. F.
,
Lu
,
F. G.
,
Zhou
,
Y. C.
,
Chen
,
C.
, and
Wei
,
S. Z.
,
2021
, “
Microstructure and Erosion Wear Properties of High Chromium Cast Iron Added Nitrogen by High Pressure in Alkaline Sand Slurry
,”
Wear
,
476
, p.
203655
.
29.
Al-Bukhaiti
,
M. A.
,
Ahmed
,
S. M.
,
Badran
,
F. M. F.
, and
Emara
,
K. M.
,
2007
, “
Effect of Impingement Angle on Slurry Erosion Behaviour and Mechanisms of 1017 Steel and High-Chromium White Cast Iron
,”
Wear
,
262
(
9–10
), pp.
1187
1198
.
30.
Jones
,
L. C.
,
2011
, “
Low Angle Scouring Erosion Behaviour of Elastomeric Materials
,”
Wear
,
271
(
9–10
), pp.
1411
1417
.
31.
Santana
,
Y. Y.
,
La Barbera-Sosa
,
J. G.
,
Bencomo
,
A.
,
Lesage
,
J.
,
Chicot
,
D.
,
Bemporad
,
E.
,
Puchi-Cabrera
,
E. S.
, and
Staia
,
M. H.
,
2012
, “
Influence of Mechanical Properties of Tungsten Carbide–Cobalt Thermal Spray Coatings on Their Solid Particle Erosion Behavior
,”
Surf. Eng.
,
28
(
4
), pp.
237
243
.
32.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part I
,”
Wear
,
6
(
1
), pp.
5
21
.
33.
Lindroos
,
M.
,
Apostol
,
M.
,
Kuokkala
,
V. T.
,
Laukkanen
,
A.
,
Valtonen
,
K.
,
Holmberg
,
K.
, and
Oja
,
O.
,
2015
, “
Experimental Study on the Behavior of Wear Resistant Steels Under High Velocity Single Particle Impacts
,”
Int. J. Impact Eng.
,
78
, pp.
114
127
.
34.
Valiev
,
R. Z.
,
Islamgaliev
,
R. K.
, and
Alexandrov
,
I. V.
,
2000
, “
Bulk Nanostructured Materials From Severe Plastic Deformation
,”
Prog. Mater. Sci.
,
45
(
2
), pp.
103
189
.
35.
Abbasi
,
M.
,
Kheirandish
,
S.
,
Kharrazi
,
Y.
, and
Hejazi
,
J.
,
2009
, “
The Fracture and Plastic Deformation of Aluminum Alloyed Hadfield Steels
,”
Mater. Sci. Eng. A
,
513–514
, pp.
72
76
.
36.
Bayraktar
,
E.
,
Khalid
,
F. A.
, and
Levaillant
,
C.
,
2004
, “
Deformation and Fracture Behaviour of High Manganese Austenitic Steel
,”
J. Mater. Process. Technol.
,
147
(
2
), pp.
145
154
.
37.
Javaheri
,
V.
,
Porter
,
D.
, and
Kuokkala
,
V. T.
,
2018
, “
Slurry Erosion of Steel-Review of Tests, Mechanisms and Materials
,”
Wear
,
408–409
, pp.
248
273
.
38.
Islam
,
M. A.
, and
Farhat
,
Z. N.
,
2014
, “
Effect of Impact Angle and Velocity on Erosion of API X42 Pipeline Steel Under High Abrasive Feed Rate
,”
Wear
,
311
(
1–2
), pp.
180
190
.
39.
Cai
,
Z. H.
,
Ding
,
H.
,
Xue
,
X.
, and
Xin
,
Q. B.
,
2013
, “
Microstructural Evolution and Mechanical Properties of Hot-Rolled 11% Manganese TRIP Steel
,”
Mater. Sci. Eng. A
,
560
, pp.
388
395
.
40.
Dastur
,
Y. N.
, and
Leslie
,
W. C.
,
1981
, “
Mechanism of Work Hardening in Hadfield Manganese Steel
,”
Metall. Mater. Trans. A
,
12
(
5
), pp.
749
759
.
41.
Kusakin
,
P.
,
Belyakov
,
A.
,
Haase
,
C.
,
Kaibyshev
,
R.
, and
Molodov
,
D. A.
,
2014
, “
Microstructure Evolution and Strengthening Mechanisms of Fe–23Mn–0.3C–1.5Al TWIP Steel During Cold Rolling
,”
Mater. Sci. Eng. A
,
617
, pp.
52
60
.
42.
Bouaziz
,
Q.
,
2012
, “
Strain-Hardening of Twinning-Induced Plasticity Steels
,”
Scr. Mater.
,
66
(
12
), pp.
982
985
.
43.
Idrissi
,
H.
,
Renard
,
K.
,
Ryelandt
,
L.
,
Schryvers
,
D.
, and
Jacques
,
P. J.
,
2010
, “
On the Mechanism of Twin Formation in Fe–Mn–C TWIP Steels
,”
Acta Mater.
,
58
(
7
), pp.
2464
2476
.
44.
Wang
,
Y. Y.
,
Sun
,
X.
,
Wang
,
Y. D.
,
Hu
,
X. H.
, and
Zbib
,
H. M.
,
2014
, “
A Mechanism-Based Model for Deformation Twinning in Polycrystalline FCC Steel
,”
Mater. Sci. Eng. A
,
607
, pp.
206
218
.
45.
Olson
,
G. B.
, and
Cohen
,
M.
,
1976
, “
A General Mechanism of Martensitic Nucleation: Part II. FCC → BCC and Other Martensitic Transformations
,”
Metall. Trans. A
,
7
(
12
), pp.
1905
1914
.
46.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.
47.
Bellman
,
R.
, and
Levy
,
A.
,
1981
, “
Erosion Mechanism in Ductile Metals
,”
Wear
,
70
(
1
), pp.
1
27
.
48.
Clark
,
H. M.
, and
Wong
,
K. K.
,
1995
, “
Impact Angle, Particle Energy and Mass Loss in Erosion by Dilute Slurries
,”
Wear
,
186–187
(
Part 2
), pp.
454
464
.
49.
Söderberg
,
S.
,
Hogmark
,
S.
, and
Swahn
,
H.
,
1983
, “
Mechanisms of Material Removal During Erosion of a Stainless Steel
,”
Tribol. Trans.
,
26
(
2
), pp.
161
172
.
50.
Wang
,
K.
,
Du
,
X. D.
,
Youn
,
K. T.
,
Hayashi
,
Y.
,
Lee
,
C. G.
, and
Koo
,
B. H.
,
2008
, “
Effect of Impact Energy on the Impact-Wear Properties of Low Carbon High Manganese Alloy Steels in Corrosive Conditions
,”
Met. Mater. Int.
,
14
(
6
), pp.
689
693
.
51.
Misra
,
R. D. K.
,
Nathani
,
H.
,
Hartmann
,
J. E.
, and
Siciliano
,
F.
,
2005
, “
Microstructural Evolution in a New 770
MPa Hot Rolled Nb–Ti Microalloyed Steel
,”
Mater. Sci. Eng. A
,
394
(
1–2
), pp.
339
352
.
52.
Allain
,
S.
,
Chateau
,
J.-P.
,
Bouaziz
,
O.
,
Migot
,
S.
, and
Guelton
,
N.
,
2004
, “
Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe–Mn–C Alloys
,”
Mater. Sci. Eng. A
,
387–389
, pp.
158
162
.
53.
Baruj
,
A.
,
Fernández Guillermet
,
A.
, and
Sadea
,
M.
,
1999
, “
Effects of Thermal Cycling and Plastic Deformation Upon the Gibbs Energy Barriers to Martensitic Transformation in Fe–Mn and Fe–Mn–Co Alloys
,”
Mater. Sci. Eng. A
,
273–275
, pp.
507
511
.
54.
Choi
,
J.-Y.
, and
Jin
,
W.
,
1997
, “
Strain Induced Martensite Formation and Its Effect on Strain Hardening Behavior in the Cold Drawn 304 Austenitic Stainless Steels
,”
Scr. Mater.
,
36
(
1
), pp.
99
104
.
You do not currently have access to this content.