Abstract

Elastohydrodynamically lubricated point contact was investigated using a two-way partitioned fluid–solid interaction (FSI) model. ansys Mechanical finite element modeling software was used to compute elastic (and plastic) deformation of the solid bodies, while ansys fluent computational fluid dynamics software was used to model the fluid with the Navier–Stokes equations. The current model is not limited by Reynolds equation assumptions, allowing for the investigation of pressure, viscosity, and temperature variation across point contact elastohydrodynamic lubrication (EHL) films. Solid body material stress distribution and fluid behavior such as cavitation were also investigated. The details of model development are described. Validation of the model is presented across a range of loads and speeds for cases when the Reynolds equation is applicable. The results are in excellent agreement. Various slide-to-roll ratios were investigated considering a non-Newtonian fluid with thermal effects to characterize lubricant properties within the EHL film. Results demonstrate notable lubricant viscosity and temperature variations within the EHL film thickness both along and perpendicular to the rolling direction for cases with high slide-to-roll ratio. Cavitation was also considered, and cavitation bubble lengths were found to agree well with results found in open literature. Finally, the effects of material plasticity on solid body response were investigated. The FSI model developed in this research provides new insights on a classical EHL problem.

References

1.
Dowson
,
D.
, and
Ehret
,
P.
,
1999
, “
Past, Present and Future Studies in Elastohydrodynamics
,”
Proc. Inst. Mech. Eng., Part J
,
213
, pp.
317
333
.
2.
Lugt
,
P. M.
, and
Morales-Espejel
,
G. E.
,
2011
, “
A Review of Elasto-Hydrodynamic Lubrication Theory
,”
Tribol. Int.
,
54
(
3
), pp.
470
496
.
3.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
Marcel Dekker, Inc.
,
New York
.
4.
Ertel
,
A. M.
,
1939
, “
Hydrodynamic Lubrication Based on New Principles
,”
Akad. Nauk SSSR Prikadnaya Math. i Mekhanika
,
3
(
2
), pp.
41
52
.
5.
Petrusevich
,
A. I.
,
1951
, “
Fundamental Conclusions From the Contact-Hydrodynamic Theory of Lubrication
,”
Izvestiya Akademii Nauk SSSR (OTN)
,
3
(
2
), pp.
209
223
.
6.
Dowson
,
B. D.
, and
Higginson
,
G. R.
,
1959
, “
A Numerical Solution to the Elasto-Hydrodynamic Problem
,”
J. Mech. Eng. Sci.
,
1
(
1
), pp.
6
15
.
7.
Venner
,
C. H.
, and
Napel
,
W. E.
,
1992
, “
Surface Roughness Effects in an EHL Line Contact
,”
ASME J. Tribol.
,
114
(
3
), pp.
616
622
.
8.
Xu
,
G.
, and
Sadeghi
,
F.
,
1996
, “
Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness
,”
ASME J. Tribol.
,
118
(
3
), pp.
473
482
.
9.
Xu
,
G.
,
Nickel
,
D. A.
,
Sadeghi
,
F.
, and
Ai
,
X.
,
1996
, “
Elastoplastohydrodynamic Lubrication With Dent Effects
,”
J. Eng. Tribol.
,
210
, pp.
223
245
.
10.
Ai
,
X.
, and
Cheng
,
H. S.
,
1994
, “
The Influence of Moving Dent on Point EHL Contacts
,”
Tribol. Trans.
,
37
(
2
), pp.
323
335
.
11.
Morales-Espejel
,
G. E.
,
2014
, “
Surface Roughness Effects in Elastohydrodynamic Lubrication: A Review With Contributions
,”
J. Eng. Tribol.
,
228
(
11
), pp.
1217
1242
.
12.
Wang
,
Z.
,
Dong
,
Z.
, and
Wang
,
Q.
,
2014
, “
Elastohydrodynamic Lubrication of Inhomogeneous Materials Using the Equivalent Inclusion Method
,”
ASME J. Tribol.
,
136
(
2
), p.
021501
.
13.
Slack
,
T. S.
,
Raje
,
N.
,
Sadeghi
,
F.
,
Doll
,
G.
, and
Hoeprich
,
M. R.
,
2007
, “
EHL Modeling for Nonhomogeneous Materials: The Effect of Material Inclusions
,”
ASME J. Tribol.
,
129
(
2
), pp.
256
273
.
14.
Habchi
,
W.
,
Vergne
,
P.
,
Bair
,
S.
,
Andersson
,
O.
,
Eyheramendy
,
D.
, and
Morales-Espejel
,
G. E.
,
2010
, “
Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behaviour of Circular TEHD Contacts
,”
Tribiology Int.
,
43
(
10
), pp.
1842
1850
.
15.
Peiran
,
Y.
, and
Shizhu
,
W.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
16.
Sui
,
P. C.
, and
Sadeghi
,
F.
,
1991
, “
Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
113
(
2
), pp.
390
397
.
17.
Ma
,
M.-T.
,
1997
, “
An Expedient Approach to the Non-Newtonian Thermal EHL in Heavily Loaded Point Contacts
,”
Wear
,
206
(
1–2
), pp.
100
112
.
18.
Conry
,
T. F.
,
Wang
,
S.
, and
Cusano
,
C.
,
1987
, “
A Reynolds-Eyring Equation for Elastohydrodynamic Lubrication in Line Contacts
,”
ASME J. Tribol.
,
109
(
4
), pp.
648
654
.
19.
Lubrecht
,
A. A.
,
Napel
,
W. E.
, and
Bosma
,
R.
,
1986
, “
Multigrid, An Alternative Method for Calculating Film Thickness and Pressure Profiles in Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
,
108
(
4
), pp.
551
556
.
20.
Venner
,
C. H.
,
ten Napel
,
W. E.
, and
Bomsa
,
R.
,
1990
, “
Advanced Multilevel Solution of the EHL Line Contact Problem
,”
ASME J. Tribol.
,
112
(
3
), pp.
426
432
.
21.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point
,”
ASME J. Tribol.
,
130
(
2
), p.
021501
.
22.
Almqvist
,
T.
, and
Larsson
,
R.
,
2002
, “
The Navier—Stokes Approach for Thermal EHL Line Contact Solutions
,”
Tribol. Int.
,
35
(
3
), pp.
163
170
.
23.
Almqvist
,
T.
,
Almqvist
,
A.
, and
Larsson
,
R.
,
2004
, “
A Comparison Between Computational Fluid Dynamic and Reynolds Approaches for Simulating Transient EHL Line Contacts
,”
Tribol. Int.
,
37
(
1
), pp.
61
69
.
24.
Hartinger
,
M.
,
Dumont
,
M.-L.
,
Ioannides
,
S.
,
Gosman
,
D.
, and
Spikes
,
H.
,
2008
, “
CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact
,”
ASME J. Tribol.
,
130
(
4
), p.
041503
.
25.
Hajishafiee
,
A.
,
2013
,
Finite-Volume CFD Modelling of Fluid-Solid Interaction in EHL Contacts
,
Doctoral dissertation
,
Imperial College London
.
26.
Srirattayawong
,
S.
,
2014
,
CFD Study of Surface Roughness Effects on the Thermo-Elastohydrodynamic Lubrication Line Contact Problem
,
University of Leicester
,
Leicester, UK
.
27.
Tošic
,
M.
,
Larsson
,
R.
,
Jovanovic
,
J.
,
Lohner
,
T.
,
Bjorling
,
M.
, and
Stahl
,
K.
,
2019
, “
A Computational Fluid Dynamics Study on Shearing Mechanisms in Thermal Elastohydrodynamic Line Contacts
,”
Lubricants
,
7
(
69
), pp.
1
19
.
28.
Bruyere
,
V.
,
Fillot
,
N.
,
Morales-Espejel
,
G. E.
, and
Vergne
,
P.
,
2012
, “
Computational Fluid Dynamics and Full Elasticity Model for Sliding Line Thermal Elastohydrodynamic Contacts
,”
Tribiology Int.
,
46
(
1
), pp.
3
13
.
29.
Singh
,
K.
,
Sadeghi
,
F.
,
Russell
,
T.
,
Lorenz
,
S. J.
,
Peterson
,
W.
,
Villarreal
,
J.
, and
Jinmon
,
T.
,
2021
, “
Fluid—Structure Interaction Modeling of Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
,
143
(
9
), p.
091601
.
30.
Yiping
,
H.
,
Darong
,
C.
,
Xianmei
,
K.
, and
Jiadao
,
W.
,
2002
, “
Model of Fluid—Structure Interaction and Its Application to Elastohydrodynamic Lubrication
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
37–38
), pp.
4231
4240
.
31.
Chan
,
R. T. P.
,
Martinez-Botas
,
R. F.
, and
Gohar
,
R.
,
2007
, “
Isoviscous Flow Past a Rigid Sphere Partially Immersed in a Thin Oil Film
,”
Lubr. Sci.
,
19
(
3
), pp.
197
212
.
32.
ANSYS
,
2019
,
ANSYS Fluent 19.0 Theory Guide
,
ANSYS, Inc.
,
Canonsburg, PA
.
33.
ANSYS
,
2013
,
ANSYS Fluent UDF Manual
,
ANSYS Inc.
,
Canonsburg, PA
.
34.
Feldermann
,
A.
,
Neumann
,
S.
, and
Jacobs
,
G.
,
2017
, “
CFD Simulation of Elastohydrodynamic Lubrication Problems With Reduced Order Models for Fluid—Structure Interaction
,”
Tribol.—Mater. Surf. Interfaces
,
11
(
1
), pp.
30
38
.
35.
Houpert
,
L.
,
1985
, “
New Results of Traction Force Calculations in Elastohydrodynamic Contacts
,”
ASME J. Tribol.
,
107
(
2
), pp.
241
245
.
36.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elasto-Hydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication
,
Pergamon Press
,
Oxford, UK
.
37.
Johnson
,
K. L.
, and
Tevaarwerk
,
J. L.
,
1977
, “
Shear Behaviour of Elastohydrodynamic Oil Films
,”
Proc. R. Soc. Lond., A
,
356
(
1685
), pp.
215
236
.
38.
ANSYS
,
2019
,
ANSYS Mechanical User’s Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
39.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford
.
40.
Habchi
,
W.
,
2018
,
Finite Element Modeling of Elastohydrodynamic Lubrication Problems
,
Wiley
,
Chichester, UK
.
41.
Benner
,
J. J.
,
Sadeghi
,
F.
,
Hoeprich
,
M. R.
, and
Frank
,
M. C.
,
2006
, “
Lubricating Properties of Water in Oil Emulsions
,”
ASME J. Tribol.
,
128
(
2
), pp.
296
311
.
42.
Ville
,
F.
, and
Nelias
,
D.
,
1998
, “
Influence of the Nature and Size of Solid Particles on the Indentation Features in EHL Contacts
,”
Proceedings of the 24th Leeds-Lyon Symposium on Tribology
,
London, UK
,
D.
Dowson
, ed., Elsevier, Tribology Series,
34
, pp.
399
410
.
43.
Strubel
,
V.
,
Fillot
,
N.
,
Ville
,
F.
,
Cavoret
,
J.
,
Vergne
,
P.
,
Mondelin
,
A.
, and
Maheo
,
Y.
,
2016
, “
Particle Entrapment in Hybrid Lubricated Point Contacts
,”
Tribol. Trans.
,
59
(
4
), pp.
768
779
.
44.
van Emden
,
E.
,
Venner
,
C. H.
, and
Morales-Espejel
,
G. E.
,
2016
, “
Aspects of Flow and Cavitation Around an EHL Contact
,”
Tribiology Int.
,
95
, pp.
435
448
.
45.
van Emden
,
E.
,
Venner
,
C. H.
, and
Morales-Espejel
,
G. E.
,
2016
, “
A Challenge to Cavitation Modeling in the Outlet Flow of an EHL Contact
,”
Tribiology Int.
,
102
, pp.
275
286
.
46.
Stadler
,
K.
,
Izumi
,
N.
,
Morita
,
T.
,
Sugimura
,
J.
, and
Piccigallo
,
B.
,
2008
, “
Estimation of Cavity Length in EHL Rolling Point Contact
,”
ASME J. Tribol.
,
130
(
3
), p.
031502
.
47.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
4th International Conference on Multiphase Flow
,
New Orleans, LA
,
May 27–June 1
.
48.
Yuan
,
W.
,
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2001
, “
Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles
,”
J. Mech. Indus.
,
2
(
5
), pp.
383
394
.
49.
Ma
,
M.
,
Wang
,
W.
, and
Jiang
,
W.
,
2021
, “
Experimental and Numerical Study on Cavitation Under Elastohydrodynamic Lubrication Point Contact
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
236
(
6
), pp.
1033
1042
.
50.
Warhadpande
,
A.
,
Sadeghi
,
F.
,
Kotzalas
,
M. N.
, and
Doll
,
G.
,
2012
, “
Effects of Plasticity on Subsurface Initiated Spalling in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
36
(
1
), pp.
80
95
.
You do not currently have access to this content.